【題目】如圖,△ABC內(nèi)接于⊙O,CD是⊙O的直徑,ABCD交于點(diǎn)E,點(diǎn)PCD延長(zhǎng)線上的一點(diǎn),AP=AC,且∠B=2P.

(1)求證:PA是⊙O的切線;

(2)PD=,求⊙O的直徑;

(3)在(2)的條件下,若點(diǎn)B等分半圓CD,求DE的長(zhǎng).

【答案】(1)證明見解析;(2);(3);

【解析】

(1)連接OA、AD,如圖,利用圓周角定理得到∠B=ADC,則可證明∠ADC=2

ACP,利用CD為直徑得到∠DAC=90°,從而得到∠ADC=60°,C=30°,則∠AOP=60°,

于是可證明∠OAP=90°,然后根據(jù)切線的判斷定理得到結(jié)論;

(2)利用∠P=30°得到OP=2OA,則,從而得到⊙O的直徑;

(3)作EHADH,如圖,由點(diǎn)B等分半圓CD得到∠BAC=45°,則∠DAE=45°,設(shè)

DH=x,則DE=2x,所以 然后求出x即可

得到DE的長(zhǎng).

(1)證明:連接OA、AD,如圖,

∵∠B=2P,B=ADC,

∴∠ADC=2P,

AP=AC,

∴∠P=ACP,

∴∠ADC=2ACP,

CD為直徑,

∴∠DAC=90°,

∴∠ADC=60°,C=30°,

∴△ADO為等邊三角形,

∴∠AOP=60°,

而∠P=ACP=30°,

∴∠OAP=90°,

OAPA,

PA是⊙O的切線;

(2)解:在RtOAP中,∵∠P=30°,

OP=2OA,

∴⊙O的直徑為;

(3)解:作EHADH,如圖,

∵點(diǎn)B等分半圓CD,

∴∠BAC=45°,

∴∠DAE=45°,

設(shè)DH=x,

RtDHE中,DE=2x,

RtAHE中,

解得

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料,然后解答問題:

在平面直角坐標(biāo)系中,以任意兩點(diǎn)Px1,y1),Qx2,y2)為端點(diǎn)的線段的中點(diǎn)坐標(biāo)為(,).如圖,在平面直角坐標(biāo)系xOy中,雙曲線yx0)和yx0)的圖象關(guān)于y軸對(duì)稱,直線y與兩個(gè)圖象分別交于Aa,1),B1,b)兩點(diǎn),點(diǎn)C為線段AB的中點(diǎn),連接OC、OB

1)求ab、k的值及點(diǎn)C的坐標(biāo);

2)若在坐標(biāo)平面上有一點(diǎn)D,使得以O、CB、D為頂點(diǎn)的四邊形是平行四邊形,請(qǐng)求出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表中有兩種移動(dòng)電話計(jì)費(fèi)方式.

月使用費(fèi)

主叫限定時(shí)間

主叫超時(shí)費(fèi)

被叫

方式一

49

100

免費(fèi)

方式二

69

150

免費(fèi)

設(shè)一個(gè)月內(nèi)主叫通話為t分鐘是正整數(shù)

當(dāng)時(shí),按方式一計(jì)費(fèi)為______元;按方式二計(jì)費(fèi)為______元;

當(dāng)時(shí),是否存在某一時(shí)間t,使兩種計(jì)費(fèi)方式相等,若存在,請(qǐng)求出對(duì)應(yīng)t的值,若不存在,請(qǐng)說明理由;

當(dāng)時(shí),請(qǐng)直接寫出省錢的計(jì)費(fèi)方式?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ABC=90°,點(diǎn)D,F(xiàn)分別是AC,AB的中點(diǎn),CEDB,BEDC.

(1)求證:四邊形DBEC是菱形;

(2)若AD=3,DF=1,求四邊形DBEC面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2013年浙江義烏3分)如圖,拋物線y=ax2+bx+cx軸交于點(diǎn)A1,0),頂點(diǎn)坐標(biāo)為(1n),與y軸的交點(diǎn)在(0,2)、(03)之間(包含端點(diǎn)),則下列結(jié)論:

當(dāng)x3時(shí),y0;②3a+b0;④3≤n≤4中,

正確的是( )

A. ①② B. ③④ C. ①④ D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,直線l經(jīng)過原點(diǎn),且與y軸正半軸所夾的銳角為60°,過點(diǎn)A(0,1)作y軸的垂線l于點(diǎn)B,過點(diǎn)B1作作直線l的垂線交y軸于點(diǎn)A1,以A1B.BA為鄰邊作ABA1C1;過點(diǎn)A1作y軸的垂線交直線l于點(diǎn)B1,過點(diǎn)B1作直線l的垂線交y軸于點(diǎn)A2,以A2B1.B1A1為鄰邊作A1B1A2C2;…;按此作法繼續(xù)下去,則Cn的坐標(biāo)是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y=的圖象的一支位于第一象限,點(diǎn)A(x1,y1),B(x2,y2)都在該函數(shù)的圖象上.

(1)m的取值范圍是   ,函數(shù)圖象的另一支位于第一象限,若x1>x2,y1>y2,則點(diǎn)B在第   象限;

(2)如圖,O為坐標(biāo)原點(diǎn),點(diǎn)A在該反比例函數(shù)位于第一象限的圖象上,點(diǎn)C與點(diǎn)A關(guān)于x軸對(duì)稱,若OAC的面積為6,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4BC4,對(duì)角線ACBD相交于點(diǎn)O,現(xiàn)將一個(gè)直角三角板OEF的直角頂點(diǎn)與O重合,再繞著O點(diǎn)轉(zhuǎn)動(dòng)三角板,并過點(diǎn)DDHOF于點(diǎn)H,連接AH.在轉(zhuǎn)動(dòng)的過程中,AH的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對(duì)角線AC,BD交于OEF過點(diǎn)OAD,BC分別交于EF,若AB4,BC5,OE1.5,則四邊形EFCD的周長(zhǎng)_____

查看答案和解析>>

同步練習(xí)冊(cè)答案