【題目】將兩個(gè)等腰Rt△ADE,Rt△ABC(其中∠DAE=∠ABC=90°,AB=BCAD=AE)如圖放置在一起,點(diǎn)EAB上,ACDE交于點(diǎn)H,連接BH、CE,且∠BCE=15°,下列結(jié)論:AC垂直平分DE;②△CDE為等邊三角形;③tan∠BCD=;,其中正確的結(jié)論是____________ (填寫(xiě)所有正確結(jié)論的序號(hào))

【答案】①②③④

【解析】

利用等腰直角三角形的性質(zhì)得出∠DAC=∠BAC即可判斷出①正確;再用等腰直角三角形的內(nèi)角的關(guān)系即可得出∠DCE60°,即可得出②正確,判斷出∠BCD75°=∠BEC即可判斷出③正確,設(shè)出AHx,利用等腰直角三角形和等邊三角形的性質(zhì)即可得出CHEH,AB,BE最后用三角形的面積公式即可得出④正確.

∵△ABC和△ADE是等腰直角三角形,

∴∠BAC=∠ACB45°,∠DAE90°,

∴∠DAC=∠BAC45°,

ADAE,

AC垂直平分DE,∴①正確,

AC垂直平分DE,

DCEC,∠DAC=∠EAC,

∵∠BCE15°,

∴∠ACE30°,

∴∠DCE2ACE60°,

∴△CDE是等邊三角形,∴②正確;

∵∠DCE60°,∠BCE15°,

∴∠BCD75°,

∵∠BEC90°15°75°,

∴∠BCD=∠BEC

RtBCE中,tanBEC

tanBCD,∴③正確;

設(shè)AHx,

RtAEH中,HEAHxAEx,

RtCEH中,∠ECH30°,

CHEH÷tan30°=EHxCE2HE2x,

ACAHCH=(1x,

RtABC中,BCABAC×sin45°=AC1xx,

BEABAEx,

SBCEBEBC×xxx2

SEHCEHCHxxx2,

,∴④正確,

即:正確的有①②③④,

故答案為:①②③④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知拋物線軸交于點(diǎn)和點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),對(duì)稱(chēng)軸是直線

1)求拋物線的表達(dá)式;

2)直線平行于軸,與拋物線交于、兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),且,點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)為,求線段的長(zhǎng);

3)點(diǎn)是該拋物線上一點(diǎn),且在第一象限內(nèi),聯(lián)結(jié)、,交線段于點(diǎn),當(dāng)時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為4,點(diǎn)EF分別在邊AB、BC上,且AE=BF=1,CEDF交于點(diǎn)O.下列結(jié)論:①∠DOC=90°, ②OC=OE, ③tan∠OCD =,中,正確的有( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】婷婷和她媽媽玩猜拳游戲.規(guī)定每人每次至少要出一個(gè)手指,兩人出拳的手指數(shù)之和為偶數(shù)時(shí)婷婷獲勝.那么,婷婷獲勝的概率為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線經(jīng)過(guò)點(diǎn)A(40)、B(1,0),交y軸于點(diǎn)C

1)求拋物線的解析式.

2)點(diǎn)P是直線AC上方的拋物線上一點(diǎn),過(guò)點(diǎn)P于點(diǎn)H,求線段PH長(zhǎng)度的最大值.

3Q為拋物線上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、BC重合),軸于點(diǎn)M,是否存在點(diǎn)Q,使得以點(diǎn)A、Q、M三點(diǎn)為頂點(diǎn)的三角形與△AOC相似?若存在,直接寫(xiě)出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=x2+(k-1)x-k與直線y=kx+1交于A、B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè).

1)如圖1,當(dāng)k=1時(shí),直接寫(xiě)出A,B兩點(diǎn)的坐標(biāo);

2)在(1)的條件下,點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),且在直線AB下方,試求出ABP面積的最大值及此時(shí)點(diǎn)P的坐標(biāo);

3)如圖2,拋物線y=x2+(k-1)x-k(k0)x軸交于點(diǎn)C、D兩點(diǎn)(點(diǎn)C在點(diǎn)D的左側(cè)),是否存在實(shí)數(shù)k使得直線y=kx+1與以O、C為直徑的圓相切?若存在,請(qǐng)求出k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】飲料廠生產(chǎn)某品牌的飲料成本是每瓶5元,每天的生產(chǎn)量不超過(guò)9000瓶.根據(jù)市場(chǎng)調(diào)查,以單價(jià)8元批發(fā)給經(jīng)銷(xiāo)商,經(jīng)銷(xiāo)商每天愿意經(jīng)銷(xiāo)5000瓶,并且表示單價(jià)每降價(jià)0.1元,經(jīng)銷(xiāo)商每天愿意多經(jīng)銷(xiāo)500瓶.

1)求出飲料廠每天的利潤(rùn)(元)與批發(fā)單價(jià)(元)之間的函數(shù)關(guān)系式;

2)批發(fā)單價(jià)定為多少元時(shí),飲料廠每天的利潤(rùn)最大,最大利潤(rùn)是多少元;

3)如果該飲料廠要使每天的利潤(rùn)不低于18750元,且每天的總成本不超過(guò)42500元,那么批發(fā)單價(jià)應(yīng)控制在什么范圍.(每天的總成本每瓶的成本每天的經(jīng)銷(xiāo)量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,CA=CB,∠ACB=90°,AB=,點(diǎn)DAB的中點(diǎn),以點(diǎn)D為圓心作圓心角為90°的扇形DEF,點(diǎn)C恰在弧EF上,則圖中陰影部分的面積為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)在第一象限,點(diǎn),,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn).把向上平移個(gè)單位長(zhǎng)度得到.反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn),交于點(diǎn)

1)求的值;

2)若,求的值;

3)設(shè)反比例函數(shù)的圖象交線段于點(diǎn)(點(diǎn)不與點(diǎn)重合) .當(dāng)時(shí),請(qǐng)直接寫(xiě)出的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案