【題目】如圖,在ABC中,CA=CB,∠ACB=90°,AB=,點DAB的中點,以點D為圓心作圓心角為90°的扇形DEF,點C恰在弧EF上,則圖中陰影部分的面積為_______

【答案】

【解析】

根據(jù)題意作出合適的輔助線,可知陰影部分的面積等于扇形DEF的面積與四邊形DNCM的面積之差,而四邊形DNCM的面積等于三角形CDB的面積,再根據(jù)題目中的數(shù)據(jù)即可解答本題.

連接CD,設DFBCM,DEACN,如圖所示,


∵以AB中點D為圓心,作圓心角為90°的扇形DEF,點C恰好在弧EF上,
CD=AB=2,∠B=DCN=45°,CD=BD
∵∠ADC=BDC=EDF=90°,
∴∠EDC+CDF=90°,∠CDF+BDF=90°,
∴∠BDM=CDN
在△BDM和△CDN中,


∴△BDM≌△CDNASA),
∴△CDN與△CDM的面積之和等于△CDM與△BDM的面積之和,
即四邊形DNCM的面積等于△CDB的面積,
∴陰影部分的面積是:
故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示在矩形ABCD中,AB6,AD3,點EF分別是邊DC、DA的三等分點(DEEC,DFAF),四邊形DFGE為矩形,連接BG

1)問題發(fā)現(xiàn):在圖(1)中,   ;

2)拓展探究:將圖(1)中的矩形DFGE繞點D旋轉一周,在旋轉過程中的大小有無變化?請僅就圖(2)的情形給出證明;

3)問題解決:當矩形DFGE旋轉至B、G、E三點共線時,請直接寫出線段CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將兩個等腰Rt△ADE,Rt△ABC(其中∠DAE=∠ABC=90°,AB=BC,AD=AE)如圖放置在一起,點EAB上,ACDE交于點H,連接BH、CE,且∠BCE=15°,下列結論:AC垂直平分DE;②△CDE為等邊三角形;③tan∠BCD=,其中正確的結論是____________ (填寫所有正確結論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某大樓的頂部有一塊廣告牌,小背在山坡的坡腳處測得廣告牌底部的仰角為45°,沿坡面向上走到處測得廣告牌頂部的仰角為30°.已知山坡的坡度為米,米.


此題考查了折疊的性質、矩形的性質、全等三角形的判定與性質以及勾股定理的應用.熟練掌握折疊的性質是關鍵.

1)求點距地面的高度

2)求廣告牌的高度.(結果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,E為圓O上的一點,C為劣弧EB的中點.CD于點C,交的直徑AB的延長線于點D.延長線段AE和線段BC,使之交于點F

1)求證:都是等腰三角形;

3)若,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與實踐

問題情境:ABC中,∠BAC=90°,AB=AC,ADBC于點D,點E是射線AD上的一個動點(不與點A重合)將線段AE繞點A順時針旋轉90°得到線段AF,連接CF交線段AB于點G,交AD于點H、連接EG

特例分析:

(1)如圖1,當點E與點D重合時,“智敏”小組提出如下問題,請你解答:

①求證:AF=CD;

②用等式表示線段CGEG之間的數(shù)量關系為:_______

拓展探究:

(2)如圖2,當點E在線段AD的延長線上,且DE=AD時,“博!毙〗M發(fā)現(xiàn)CF=2EG.請你證明;

(3)如圖3,當點E在線段AD的延長線上,且AE=AB時,的值為_______;

推廣應用:

(4)當點E在射線AD上運動時,,則的值為______用含m.n的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市預測某飲料有發(fā)展前途,用1600元購進一批飲料,面市后果然供不應求,又用6000元購進這批飲料,第二批飲料的數(shù)量是第一批的3倍,但單價比第一批貴2.

(1)第一批飲料進貨單價多少元?

(2)若二次購進飲料按同一價格銷售,兩批全部售完后,獲利不少于1200元,那么銷售單價至少為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20195月,“亞洲文明對話大會”在北京成功舉辦,某研究機構為了了解10-60歲年年齡段市民對本次大會的關注程度,隨機選取了100名年齡在該范圍內(nèi)的市民進行了調查,并將搜集到的數(shù)據(jù)制成了尚不完整的頻數(shù)分布表、頻數(shù)分布直方圖和扇形統(tǒng)計圖,如下所示:

組別

年齡段

頻數(shù)(人數(shù))

第一組

5

第二組

第三組

35

第四組

20

第五組

15

請直接寫出第3組人數(shù)在扇形統(tǒng)計圖中所對應的圓心角是_________度;假設該市現(xiàn)有10-60歲的市民300萬人,則40-50歲年齡段的關注本次大會的人數(shù)約有___________萬人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,點P是平行四邊形ABCD外一點,PEABBC于點EPAPD分別交BC于點M、N,點MBE的中點.


1)求證:CN=EN;

2)若平行四邊形ABCD的面積為12,求PMN的面積.

查看答案和解析>>

同步練習冊答案