【題目】如圖1,在中,,是的外接圓,過點(diǎn)作交于點(diǎn),連接交于點(diǎn),延長至點(diǎn),使,連接.
(1)求證:;
(2)求證:是的切線;
(3)如圖2,若點(diǎn)是的內(nèi)心,,求的長.
【答案】(1)證明見解析;(2)證明見解析;(3)BG=5.
【解析】
(1)根據(jù)等腰三角形的性質(zhì)可得,再根據(jù)圓周角定理以及可得,即可得ED=EC;
(2)連接,可得,繼而根據(jù)以及三角形外角的性質(zhì)可以推導(dǎo)得出,可得,從而可得,問題得證;
(3)證明,可得,從而求得,連接,結(jié)合三角形內(nèi)心可推導(dǎo)得出,繼而根據(jù)等腰三角形的判定可得.
(1)∵,∴,
又∵,,
∴,
∴;
(2)連接,
∵,∴,
∴,
∵,∴,
∴,
∵,∴,
∴,∴,
∴,
∴為的切線;
(3)∵,,
∴,∴,
∴,
∵,∴,
連接,∴,
,
∵點(diǎn)為內(nèi)心,∴,
又∵,
∴,
∴,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)種植A、B、C三種樹苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一種樹苗,且每名工人每天可植A種樹苗8棵;或植B種樹苗6棵,或植C種樹苗5棵.經(jīng)過統(tǒng)計,在整個過程中,每棵樹苗的種植成本如圖所示.設(shè)種植A種樹苗的工人為x名,種植B種樹苗的工人為y名.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)種植的總成本為w元,
①求w與x之間的函數(shù)關(guān)系式;
②若種植的總成本為5600元,從植樹工人中隨機(jī)采訪一名工人,求采訪到種植C種樹苗工人的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線 ( 為常數(shù))經(jīng)過點(diǎn) ,與 軸相 交于點(diǎn) 、(點(diǎn) 在點(diǎn) 的右側(cè)).
(1)求拋物線的解析式和點(diǎn) 的坐標(biāo);
(2)將直線 向下平移 ( )個單位長度后,得到的直線與拋物線只有一個公共點(diǎn) ,求點(diǎn) 的坐標(biāo);
(3)在(2)的條件下,連接 、,在 正半軸上是否存在點(diǎn) ,使以 、、 為頂點(diǎn)的三角形與 相似.若存在,請求出點(diǎn) 的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正n邊形的周長為60,邊長為a
(1)當(dāng)n=3時,請直接寫出a的值;
(2)把正n邊形的周長與邊數(shù)同時增加7后,假設(shè)得到的仍是正多邊形,它的邊數(shù)為n+7,周長為67,邊長為b.有人分別取n等于3,20,120,再求出相應(yīng)的a與b,然后斷言:“無論n取任何大于2的正整數(shù),a與b一定不相等.”你認(rèn)為這種說法對嗎?若不對,請求出不符合這一說法的n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)坐標(biāo)為,為軸正半軸上一動點(diǎn),則度數(shù)為_________,在點(diǎn)運(yùn)動的過程中的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,BE是它的角平分線,∠C=90°,D在AB邊上,以DB為直徑的半圓O經(jīng)過點(diǎn)E,交BC于點(diǎn)F.
(1)求證:AC是⊙O的切線;
(2)已知∠A=30°,⊙O的半徑為4,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,六邊形ABCDEF的內(nèi)角都相等, ,則下列結(jié)論成立的個數(shù)是
; ; ; 四邊形ACDF是平行四邊形; 六邊形ABCDEF既是中心對稱圖形,又是軸對稱圖形.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn)和點(diǎn)C,與y軸交于點(diǎn)B,的面積是6.
(1)求一次函數(shù)與反比例函數(shù)的表達(dá)式;(2)當(dāng)時,比較與的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是坐標(biāo)原點(diǎn),點(diǎn)是反比例函數(shù)圖像上一點(diǎn),點(diǎn)在軸上,,四邊形是平行四邊形,交反比例函數(shù)圖像于點(diǎn).
(1)平行四邊形的面積等于______;
(2)設(shè)點(diǎn)橫坐標(biāo)為,試用表示點(diǎn)的坐標(biāo);(要有推理和計算過程)
(3)求的值;
(4)求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com