【題目】已知,如圖1:△ABC中,∠B、∠C的平分線相交于點(diǎn)O,過點(diǎn)O作EF∥BC交AB、AC于E、F
(1)直接寫出圖1中所有的等腰三角形.指出EF與BE、CF間有怎樣的數(shù)量關(guān)系?
(2)在(1)的條件下,若AB=15,AC=10,求△AEF的周長(zhǎng);
(3)如圖2,若△ABC中,∠B的平分線與三角形外角∠ACG的平分線CO交于點(diǎn)O,過O點(diǎn)作OE∥BC交AB于E,交AC于F,請(qǐng)問(1)中EF與BE、CF間的關(guān)系還是否存在,若存在,說明理由:若不存在,寫出三者新的數(shù)量關(guān)系,并說明理由;
(4)如圖3,∠ABC、∠ACB的外角平分線的延長(zhǎng)線相交于點(diǎn)O,請(qǐng)直接寫出EF,BE,CF,MN之間的數(shù)量關(guān)系.不需證明.
【答案】(1)△BEO、△CFO是等腰三角形,EF= BE+CF;(2)25;(3)(1)中結(jié)論不成立,新結(jié)論為:EF=BE﹣CF,理由見解析;(4)EF=BE+MN+CF.
【解析】
(1)利用角平分線和平行線的即可得出結(jié)論;
(2)利用(1)的結(jié)論即可得出結(jié)論;
(3)同(1)的方法即可得出結(jié)論;
(4)同(1)的方法即可得出結(jié)論.
(1)∵BO是∠ABC的平分線,∴∠EBO=∠CBO.
∵EF∥BC,∴∠CBO=∠BOE,∴∠EBO=∠EOB,∴BE=OE,∴△BEO是等腰三角形.
同理:△CFO是等腰三角形,EF=OE+OF=BE+CF;
(2)由(1)知,OE=BE,OF=CF,∴AEF的周長(zhǎng)為AE+EF+AF=AE+OE+OF+AF=AE+BE+CF+AF=AB+AC=25;
(3)(1)中結(jié)論不成立,新結(jié)論為:EF=BE﹣CF,理由:
∵BO是∠ABC的平分線,∴∠ABO=∠CBO.
∵EF∥BC,∴∠CBO=∠EOB,∴∠ABO=EOB,∴OE=BE.
同理:CF=OF,∴EF=OE﹣OF=BE﹣CF.
(4)∵BO是∠CBE的平分線,∴∠EBO=∠CBO.
∵EF∥BC,∴∠EMB=∠CBO,∴∠EBM=∠EMB,∴BE=EM,同理:FN=CF,∴EF=EM+MN+FN=BE+MN+CF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,為邊的中點(diǎn),為等邊三角形.
(1)求證:;
(2)若,在邊上找一點(diǎn),使得最小,并求出這個(gè)最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O是原點(diǎn),矩形OABC的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)C在y的正半軸上,點(diǎn)B的坐標(biāo)是(5,3),拋物線y=x2+bx+c經(jīng)過A、C兩點(diǎn),與x軸的另一個(gè)交點(diǎn)是點(diǎn)D,連接BD.
(1)求拋物線的解析式;
(2)點(diǎn)M是拋物線對(duì)稱軸上的一點(diǎn),以M、B、D為頂點(diǎn)的三角形的面積是6,求點(diǎn)M的坐標(biāo);
(3)點(diǎn)P從點(diǎn)D出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿D→B勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿B→A→D勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P、Q同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,當(dāng)t為何值時(shí),以D、P、Q為頂點(diǎn)的三角形是等腰三角形?請(qǐng)直接寫出所有符合條件的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖△ABC中,∠ACB=90°,AC=8,BC=6,點(diǎn)E是AB中點(diǎn),將△CAE沿著直線CE翻折,得到△CDE,連接AD,則點(diǎn)E到線段AD的距離等于( )
A.2B.1.8C.1.5D.1.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,已知AB∥CD,AD⊥AB,AD=2,AB+CD=4,點(diǎn)E為BC的中點(diǎn).
(1)求四邊形ABCD的面積;
(2)若AE⊥BC,求CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在ABCD中,AE⊥BC于點(diǎn)E,以點(diǎn)B為中心,取旋轉(zhuǎn)角等于∠ABC,把△BAE順時(shí)針旋轉(zhuǎn)得到△BA′E′,連接DA′,若∠ADC=60°,AD=5,DC=4,則DA′的大小為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分線,DE⊥AB于E點(diǎn).
(1)求∠EDA的度數(shù);
(2)AB=10,AC=8,DE=3,求S△ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,對(duì)稱軸為直線,則下列結(jié)論正確的是( )
A. B. 方程的兩個(gè)根是,
C. D. 當(dāng)時(shí),隨的增大而增大
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的位置如圖所示.
(1)分別寫出△ABC各個(gè)頂點(diǎn)的坐標(biāo);
(2)判斷△ABC的形狀;
(3)請(qǐng)?jiān)趫D中畫出△ABC關(guān)于y軸對(duì)稱的圖形△A'B'C'.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com