【題目】(8分)如圖,梯子斜靠在與地面垂直(垂足為O)的墻上,當梯子位于AB位置時,它與地面所成的角∠ABO=60°;當梯子底端向右滑動1m(即BD=1m)到達CD位置時,它與地面所成的角∠CDO=51°18′,求梯子的長.(參考數(shù)據(jù):sin51°18′≈0.780,cos51°18′≈0.625,tan51°18′≈1.248)
【答案】梯子的長是8米.
【解析】試題分析:此題考查了解直角三角形的應用,主要是三角函數(shù)的基本概念及運算,關鍵把實際問題轉化為數(shù)學問題加以計算.設梯子的長為xm.在Rt△ABO中,根據(jù)三角函數(shù)得到OB,在Rt△CDO中,根據(jù)三角函數(shù)得到OD,再根據(jù)BD=OD﹣OB,得到關于x的方程,解方程即可求解.
試題解析:設梯子的長為xm.在Rt△ABO中,cos∠ABO=,∴OB=ABcos∠ABO=xcos60°=x.在Rt△CDO中,cos∠CDO=,∴OD=CDcos∠CDO=xcos51°18′≈0.625x.∵BD=OD﹣OB,∴0.625x﹣x=1,解得x=8.故梯子的長是8米.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知線段AB的兩個端點分別是A(4,﹣1),B(1,1)將線段AB平移后得到線段A′B′,若點A的坐標為(﹣2,2),則點B′的坐標為( )
A.(﹣5,4)
B.(4,3)
C.(﹣1,﹣2)
D.(﹣2,﹣1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義運算:ab=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的兩根,則bb﹣aa的值為( )
A. 0 B. 1 C. 2 D. 與m有關
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC 中,∠C=90°,BC=3,AC=4.現(xiàn)在要將交ABC 擴充成等腰三角形,且擴充的部分是以AC為直角邊的直角三角形,求擴充后等腰三角形的周長.
趙佳同學是這樣操作的:如圖 1 所示,延長BC 到點 D,使CD=BC,連接AD.所以,△ADB 為符合條件的三角形.則此時△ADB的周長為____________.
請你在圖2、圖3中再設計兩種擴充方案,并直接寫出擴充后等腰三角形的周長.
圖2的周長:______________;圖3的周長:______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰三角形ABC中,AC=BC,分別以BC和AC為直角邊向上作等腰直角三角形△BCD和△ACE,AE與BD相交于點F,連接CF并延長交AB于點G.求證:CG垂直平分AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請認真觀察圖形,解答下列問題:
(1)根據(jù)圖中條件,用兩種方法表示兩個陰影圖形的面積的和(只需表示,不必化簡);并由此得到怎樣的等量關系?請用等式表示;
(2)如果圖中的a,b(a>b)滿足a2+b2=53,ab=14,求:①a+b的值; ②a-b的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列運算正確的是( 。
A. (x3)4=x7 B. ﹣(﹣x)2x3=﹣x5 C. x+x2=x3 D. (x+y)2=x2+y2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com