【題目】五家堯草莓是我旗的特色農(nóng)產(chǎn)品,深受人們的喜歡.某超市對進貨價為10元/千克的某種草莓的銷售情況進行統(tǒng)計,發(fā)現(xiàn)每天銷售量y(千克)與銷售價x(元/千克)存在一次函數(shù)關(guān)系,如圖所示.
(1)求y關(guān)于x的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(2)為了讓顧客得到實惠,商場將銷售價定為多少時,該品種草莓每天銷售利潤為150元?
(3)應(yīng)怎樣確定銷售價,使該品種草莓的每天銷售利潤最大?最大利潤是多少?
【答案】(1)y=﹣2x+60;(2)15元/千克;(3)x=6.5時,利潤最大為:245元.
【解析】
(1)把(20,20)、(30,0)代入一次函數(shù)y=kx+b,即可求解;
(2)(-20x+60)(x-10)=150,解方程即可;
(3)設(shè)售價為x元時,利潤W最大,則:w=(-20x+60)(x-10),求函數(shù)的最大值即可.
(1)把(20,20)、(30,0)代入一次函數(shù)y=kx+b,
解得:k=﹣2,b=60,
函數(shù)的表達式為:y=﹣2x+60;
(2)(﹣20x+60)(x﹣10)=150,
解得:x=15或25,
∴為了讓顧客得到實惠,商場將銷售價定為15時,利潤最大;
(3)設(shè)售價為x元時,利潤W最大,
則:w=(﹣20x+60)(x﹣10)=﹣20(x﹣3)(x﹣10),
當x=10﹣3.5=6.5時,利潤最大為:245元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB = 6cm,∠CAB = 25°,P是線段AB上一動點,過點P作PM⊥AB交射線AC于點M,連接MB,過點P作PN⊥MB于點N.設(shè)A,P兩點間的距離為xcm,P,N兩點間的距離為ycm.(當點P與點A或點B重合時,y的值均為0)小海根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小海的探究過程,請補充完整:
(1)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:
x/cm | 0.00 | 0.60 | 1.00 | 1.51 | 2.00 | 2.75 | 3.00 | 3.50 | 4.00 | 4.29 | 4.90 | 5.50 | 6.00 |
y/cm | 0.00 | 0.29 | 0.47 | 0.70 | 1.20 | 1.27 | 1.37 | 1.36 | 1.30 | 1.00 | 0.49 | 0.00 |
(說明:補全表格時相關(guān)數(shù)值保留兩位小數(shù))
(2)建立平面直角坐標系,描出以補全后的表中各對對應(yīng)值為坐標的點,畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當y=0.5時,與之對應(yīng)的值的個數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關(guān)于x的一元二次方程(m-1)x2-x-2=0,
(1)若x=-1是方程的一個根,求m的值及另一個根;
(2)當m為何值時方程有兩個不同的實數(shù)根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在圖1、2中,已知∠ABC=120°,BD=2,點E為直線BC上的動點,連接DE,以DE為邊向上作等邊△DEF,使得點F在∠ABC內(nèi)部,連接BF.
(1)如圖1,當BD=BE時,∠EBF= ;
(2)如圖2,當BD≠BE時,(1)中的結(jié)論是否成立?若成立,請予以證明,若不成立請說明理由;
(3)請直接寫出線段BD,BE,BF之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=x2,以D(﹣2,1)為直角頂點作該拋物線的內(nèi)接Rt△ADB(即A.D.B均在拋物線上).直線AB必經(jīng)過一定點,則該定點坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:∠MON=30°,點A1、A2、A3…在射線ON上,點B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若,則△A6B6A7的邊長為( 。
A.6B.12C.16D.32
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列分式方程解應(yīng)用題.
為緩解市區(qū)至通州沿線的通勤壓力,北京市政府利用既有國鐵線路富余能力,通過線路及站臺改造,開通了“京通號”城際動車組,每班動車組預(yù)定運送乘客1200人,為提高運輸效率,“京通號”車組對動車車廂進行了改裝,使得每節(jié)車廂乘坐的人數(shù)比改裝前多了,運送預(yù)定數(shù)量的乘客所需要的車廂數(shù)比改裝前減少了4節(jié),求改裝后每節(jié)車廂可以搭載的乘客人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2-4x+3.
(1)在網(wǎng)格中,畫出該函數(shù)的圖象.
(2)(1)中圖象與軸的交點記為A,B,若該圖象上存在一點C,且△ABC的面積為3,求點C的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com