【題目】如圖,在平面直角坐標系中,邊長為4的等邊的邊軸的負半軸上,反比例函數(shù)的圖象經(jīng)過邊的中點,且與邊交于點.

1)求的值;

2)連接,,求的面積;

3)若直線與直線平行,且與的邊有交點,直接寫出的取值范圍.

【答案】1;(23;(3.

【解析】

1)過點,根據(jù)等邊三角形的性質(zhì)可求出點C的坐標,把點C的坐標代入反比例函數(shù)即可求出k的值;

2)過點,過點.再根據(jù)等邊三角形的性質(zhì)可求得AF,BF,從而求出點A的坐標.再用待定系數(shù)法求出直線OA的解析式,讓反比例函數(shù)解析 式與直線OA的解析式聯(lián)立解方程組求出點D的坐標,三角形OCD的面積=四邊形ODCE的面積-三角形OCE的面積.從而得到求解.

3)由圖形可知當過點Cn有最大值,當n有最小值.

1)如圖1,過點,

是等邊三角形,

,,

中點,

.

中,,,

,

,

,

.

2)如圖2.過點,過點.

,

,

設(shè)直線解析式為,則,

,

由(1)可知反比例函數(shù)解析式為,

聯(lián)立方程組:,

解得:(舍),

,

.

3.理由如下:

,

=1.

∵直線與直線平行,

∴m=1.

∴直線解析式為.

∴把代入,得:

n=.

代入,得:

n=0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+ca≠0)的圖象與x軸交于A,B兩點,與y軸交于C點,且對稱軸為x1,點B坐標為(﹣1,0),則下面的四個結(jié)論,其中正確的個數(shù)為(  )

2a+b04a2b+c0ac0④當y0時,﹣1x4

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場計劃購進A,B兩種型號的手機,已知每部A型號手機的進價比每部B型號手機進價多500元,若商場用50000元共購進A型號手機10部,B型號手機20部,求A、B兩種型號的手機每部進價各是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的直徑,的弦,點外,連接,的平分線交于點.

1)若,求證:的切線;

2)若,求弦的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB5,AD3,動點P滿足SPABS矩形ABCD,則點PA、B兩點距離之和PA+PB的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售一批襯衫,每件成本為50元,如果按每件60元出售,可銷售800件;如果每件提價5元出售,其銷售量就減少100件,如果商場銷售這批襯衫要獲利潤12000元,又使顧客獲得更多的優(yōu)惠,那么這種襯衫售價應(yīng)定為多少元?

1)設(shè)提價了元,則這種襯衫的售價為___________元,銷售量為____________.

2)列方程完成本題的解答.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某數(shù)學(xué)興趣小組想測量一棵樹的高度,在陽光下,一名同學(xué)測得一根長為1m的竹竿的影長為0.5m,同時另一名同學(xué)測量一棵樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上,其中,落在墻壁上的影長為0.8m,落在地面上的影長為4.4m,則樹的高為_______m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菲爾茲獎是國際上享有崇高聲譽的一個數(shù)學(xué)獎項,每4年評選一次,頒給有卓越貢獻的年輕數(shù)學(xué)家,被視為數(shù)學(xué)界的諾貝爾獎.下面的數(shù)據(jù)是從1936年至201445歲以下菲爾茲獎得住獲獎時的年齡(歲):39 35 33 39 27 33 35 31 31 37 32 38 36 31 39 32 38 37 34 34 38 32 35 36 33 32 35 36 37 39 38 40 38 37 39 38 34 33 40 36 36 37 31 38 38 37 35 40 39 37

請根據(jù)以上數(shù)據(jù),解答以下問題:

1)小彬按組距為5”列出了如下的頻數(shù)分布表,每組數(shù)據(jù)含最小值不含最大值,請將表中空缺的部分補充完整,并補全頻數(shù)分布直方圖:

2)在(1)的基礎(chǔ)上,小彬又畫出了如圖所示的扇形統(tǒng)計圖,圖中B組所對的圓心角的度數(shù)為   

3)根據(jù)(1)中的頻數(shù)分布直方圖試描述這50位菲爾茲獎得主獲獎時的年齡的分布特征.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校初三(1)班的同學(xué)踴躍為雅安蘆山地震捐款,根據(jù)捐款情況(捐款數(shù)為正數(shù))制作以下統(tǒng)計圖表,但生活委員不小心把墨水滴在統(tǒng)計表上,部分數(shù)據(jù)看不清楚.

1)全班有多少人捐款?

2)如果捐款0~20元的人數(shù)在扇形統(tǒng)計圖中所占的圓心角為72°,那么捐款21~40元的有多少人?

查看答案和解析>>

同步練習(xí)冊答案