【題目】如圖,在由每個邊長為1的小正方形組成的9×9的網(wǎng)格中,點A,B,C都在格點上,點B繞點C逆時針旋轉(zhuǎn)90°后的對應(yīng)點為M,已知點B的坐標為(0,﹣2)(坐標軸與網(wǎng)格線平行).
(1)直接寫出:點C的坐標為 ,點M的坐標為 ;
(2)若平面內(nèi)存在一點P,且P為△ACM的外心,直接寫出點P的坐標是 ;
(3)CN平分∠BCM交y軸于點N,則N點坐標為 .
【答案】(1)(﹣3,2),(1,5);(2)(,0);(3)(0,)
【解析】
(1)先建立直角坐標系,作出圖形,構(gòu)造全等三角形,即可得出結(jié)論;
(2)先判斷出PA=PC,再判斷出點P的縱坐標為0,利用PA=PM建立方程求解即可得出結(jié)論;
(3)利用角平分線的特點構(gòu)造出等腰三角形求出MF,進而求出直線CF的解析式,即可得出結(jié)論.
解:(1)建立如圖1所示的平面坐標系,
由網(wǎng)格知,A(﹣3,-2),C(﹣3,2),
∴AC⊥x軸,AC=4,
∵B(0,-2),
∴AB=3,
過點M作AC的垂線交AC于D,
∴∠CDM=∠BAC=90°,
∴∠DCM+CMD=90°,
由旋轉(zhuǎn)知,BC=MC,∠BCM=90°,
∴∠ACB+∠DCM=90°,
∴∠ACB=∠DMC,
∴△ABC≌△DCM(AAS),
∴DM=AC=4,CD=AB=3,
∴AD=AC+CD=7.
∴M(1,5),
故答案為(﹣3,2),(1,5);
(2)由(1)知,A(-3,-2),C(﹣3,2),
設(shè)點P的坐標為(m,n)
∵點P是△ACM的外接圓的圓心,
∴點P到點A,C,M的距離相等,
由(1)知,A(-3,-2),C(﹣3,2),
∴n=0,
∴P(m,0),
而PA= ,
∴m= ,
∴P(,0),
故答案為(,0);
(3)如圖3,
過點M作MF∥AC交CN于F,
∴∠CFM=∠ACN,
∵CN是∠ACM的角平分線
∴∠ACN=∠MCN,
∴∠MCN=∠CFN,
∴MF=CM,
而CM=
∴MF=5,
∴F(1,0),
∵C(﹣3,2),
設(shè)直線CF的解析式為 ,
將F,C代入得
解得
∴直線CF的解析式為
令x=0,則y= ,
∴N().
故答案為().
科目:初中數(shù)學 來源: 題型:
【題目】已知在菱形ABCD中,AB=4,∠BAD=120°,點P是直線AB上任意一點,聯(lián)結(jié)PC,在∠PCD內(nèi)部作射線CQ與對角線BD交于點Q(與B、D不重合),且∠PCQ=30°.
(1)如圖,當點P在邊AB上時,如果BP=3,求線段PC的長;
(2)當點P在射線BA上時,設(shè),求y關(guān)于的函數(shù)解析式及定義域;
(3)聯(lián)結(jié)PQ,直線PQ與直線BC交于點E,如果與相似,求線段BP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC內(nèi)接于,點D是的中點,且與點C位于AB的異側(cè),CD交AB于點E.
(1)求證:△ADE∽△CDA
(2)如圖2,若的直徑AB,CE=2,求AD和CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.點P是x軸上的一個動點.
(1)求此拋物線的解析式;
(2)求C、D兩點坐標及△BCD的面積;
(3)若點P在x軸上方的拋物線上,滿足S△PCD=S△BCD,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖像分別交x、y軸于點A、B,拋物線經(jīng)過點A、B,點P為第四象限內(nèi)拋物線上的一個動點.
(1)求此拋物線對應(yīng)的函數(shù)表達式;
(2)如圖1所示,過點P作PM∥y軸,分別交直線AB、x軸于點C、D,若以點P、B、C為頂點的三角形與以點A、C、D為頂點的三角形相似,求點P的坐標;
(3)如圖2所示,過點P作PQ⊥AB于點Q,連接PB,當△PBQ中有某個角的度數(shù)等于∠OAB度數(shù)的2倍時,請直接寫出點P的橫坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】同時拋擲A、B兩個均勻的小立方體(每個面上分別標有數(shù)字1,2,3,4,5,6),設(shè)兩立方體朝上的數(shù)字分別為x、y,并以此確定點P(x,y),那么點P落在拋物線上的概率為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點A(4,4),B(5,0)和原點O,P為二次函數(shù)圖象上的一個動點,過點P作x軸的垂線,垂足為D(m,0),并與直線OA相較于點C.
(1)求出二次函數(shù)的解析式;
(2)當點P在直線OA的上方時,求線段PC的最大值;
(3)當點P在直線OA的上方時,是否存在一點P,使射線OP平分∠AOy,若存在,請求出P點坐標;若不存在.請說明理由;
(4)當m>0時,探索是否存在點P,使得△PCO為等腰三角形,若存在,求出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中xOy中,已知點A的坐標是(0,1),以OA為邊在右側(cè)作等邊三角形OAA1,過點A1作x軸的垂線,垂足為點O1,以O1A1為邊在右側(cè)作等邊三角形O1A1A2,再過點A2作x軸的垂線,垂足為點O2,以O2A2為邊在右側(cè)作等邊三角形O2A2A3,…,按此規(guī)律繼續(xù)作下去,得到等邊三角形O2018A2018A2019,則點A2019的縱坐標為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com