【題目】已知a、b、c是三角形的三邊長,如果滿足(a﹣5)2+|b﹣12|+c2﹣26c+169=0,則三角形的形狀是( )
A.底與邊不相等的等腰三角形
B.等邊三角形
C.鈍角三角形
D.直角三角形
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在8×8網(wǎng)格紙中,每個小正方形的邊長都為1.
(1)已知點A在第四象限,且到x軸距離為1,到y(tǒng)軸距離為5,求點A的坐標;
(2)在(1)的條件下,已知點B(a+1,﹣2a+10),且點B在第一、三象限的角平分線上,判斷△OAB的形狀.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:如圖(一),△ABC的周長為,內(nèi)切圓O的半徑為r,連結(jié)OA、OB、OC,△ABC被劃分為三個小三角形,用S△ABC表示△ABC的面積
∵ S△ABC=S△OAB+S△OBC+S△OCA
又∵S△OAB=,S△OBC=,S△OCA =
∴S△ABC=++= (可作為三角形內(nèi)切圓半徑公式)
(1)理解與應用:利用公式計算邊長分為5、12、13的三角形內(nèi)切圓半徑;
(2)類比與推理:若四邊形ABCD存在內(nèi)切圓(與各邊都相切的圓,如圖(二))且面積為S,各邊長分別為a、b、c、d,試推導四邊形的內(nèi)切圓半徑公式;
(3)拓展與延伸:若一個n邊形(n為不小于3的整數(shù))存在內(nèi)切圓,且面積為S,各邊長分別為a1、a2、a3、…、an,合理猜想其內(nèi)切圓半徑公式(不需說明理由).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于x的方程mx2﹣2mx+m+n=0有兩個實數(shù)根.
(1)求實數(shù)m,n需滿足的條件;
(2)寫出一組滿足條件的m,n的值,并求此時方程的根.
查看答案和解析>>
科目:
來源: 題型:【題目】如圖,在平面直角坐標系中,直線y=x+3交x軸于A點,交y軸于B點,過A、B兩點的拋物線y=-x2+bx+c交x軸于另一點C,點D是拋物線的頂點.
(1)求此拋物線的解析式;
(2)點P是直線AB上方的拋物線上一點(不與點A、B重合),過點P作x軸的垂線交x軸于點H,交直線AB于點F,作PG⊥AB于點G.求出△PFG的周長最大值;
(3)在拋物線上是否存在除點D以外的點M,使得△ABM與△ABD的面積相等?若存在,請求出此時點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)軸上一點 A,一只螞蟻從 A 出發(fā)爬了 4 個單位長度到了原點,則點 A 所表 示的數(shù)是( )
A. 4 B. ﹣4 C. ±8 D. ±4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,任何一個三角形的三條內(nèi)角平分線相交于一點,如圖,若△ABC 的三條內(nèi)角平分線相交于點I,過I作DE⊥AI分別交AB、AC于點D、E.
(1)請你通過畫圖、度量,填寫右上表(圖畫在草稿紙上,并盡量畫準確)
(2)從上表中你發(fā)現(xiàn)了∠BIC與∠BDI之間有何數(shù)量關系,請寫出來,并說明其中的道理.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店上月的營業(yè)額是a萬元,本月比上月增長15%,則本月營業(yè)額是( 。
A. 15%(a+1)萬元 B. 15% a萬元 C. (1+15%)a萬元 D. (1+15%)2a萬元
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com