【題目】在平面坐標(biāo)系中,已知線段,且的坐標(biāo)分別為,點為線段的中點.
(1)線段與軸的位置關(guān)系是
(2)求點的坐標(biāo)。
(3)在軸上是否存在點,使得三角形面積為3.若存在,求出點的坐標(biāo);若不存在,請說明理由.
【答案】(1)平行;(2);(3)點P的坐標(biāo)為時,三角形的面積為3.
【解析】
(1)因為A、B點的縱坐標(biāo)相同,所以線段與軸平行;(2)點為線段的中點,所以點C的橫坐標(biāo)即為點A、B橫坐標(biāo)的中間值,縱坐標(biāo)和點A、B相同;(3)假設(shè)在軸上存在點,使得三角形的面積為3求出AC長,則,由此可求出P點的縱坐標(biāo),根據(jù)點P在y軸上可知其坐標(biāo).
解:(1)因為A、B點的縱坐標(biāo)相同,所以線段與軸平行;
(2),C是線段AB的中點,∴C點坐標(biāo)為:
(3)在軸上存在點,使得三角形的面積為3.其理由如下:
由(2)知:,
即:
或 ,
∴P點坐標(biāo)為:或時,三角形的面積為3.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一種折疊椅,忽略其支架等的寬度,得到它的側(cè)面簡化結(jié)構(gòu)圖(圖2),支架與坐板均用線段表示.若座板CD平行于地面,前支撐架AB與后支撐架OF分別與CD交于點E、D,ED= 15㎝,OD=20㎝,DF=40㎝,∠ODC=60°,∠AED=50°.
(1)求兩支架著地點B、F之間的距離;
(2)若A、D兩點所在的直線正好與地面垂直,求椅子的高度(結(jié)果取整數(shù)).
(參考數(shù)據(jù): ;可使用科學(xué)計算器.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一筆直的海岸線上有A、B兩個觀測點,B在A的正東方向,AB=4km.從A測得燈塔C在北偏東60°的方向,從B測得燈塔C在北偏西27°的方向,求燈塔C與觀測點A的距離(精確到0.1km).(參考數(shù)據(jù):sin27°≈0.45,cos27°≈0.90,tan27°≈0.50,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,一次函數(shù)y1=x+2與反比例函數(shù)y2=(x>0)的圖象交于點A(a,5)
(1)確定反比例函數(shù)的表達(dá)式;
(2)結(jié)合圖象,直接寫出x為何值時,y1<y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c三個數(shù)在數(shù)軸上對應(yīng)點的位置如圖所示,下列幾個判斷:①a<c<b;②ab<0;③a+b>0;④c﹣a<0中,錯誤的有( )個.
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點D作DE⊥AB,于點E
(1)求證:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“低碳生活,綠色出行”,共享單車已經(jīng)成了很多人出行的主要選擇,今年1月份,“摩拜”共享單車又向長沙河西新投放共享單車640輛.
(1)若1月份到3月份新投放單車數(shù)量的月平均增長率相同,3月份新投放共享單車1000輛.求月平均增長率。
(2)考慮到共享單車市場競爭激烈,摩拜公司準(zhǔn)備用不超過60000元的資金再購進(jìn)A,B兩種規(guī)格的自行車100輛,且A型車不超過60輛。已知A型的進(jìn)價為500元/輛,B型車進(jìn)價為700元/輛,設(shè)購進(jìn)A型車m輛,求出m的取值范圍。
(3)已知A型車每月產(chǎn)生的利潤是100元/輛,B型車每月產(chǎn)生的利潤是90元/輛,在(2)的條件下,求公司每月的最大利潤。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2011廣西崇左,18,3分)已知:二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論中:①abc>0;②2a+b<0;③a+b<m(am+b)(m≠1的實數(shù));④(a+c)2<b2;⑤a>1.其中正確的項是( )
A. ①⑤ B. ①②⑤ C. ②⑤ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個頂點的坐標(biāo)分別為A(0,3),B(3,4),C(2,2).(正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度)
(1)畫出△ABC向下平移4個單位,再向左平移1個單位得到的△A1B1C1,并直接寫出C1點的坐標(biāo);
(2)作出△ABC繞點A順時針方向旋轉(zhuǎn)90°后得到的△A2B2C2,并直接寫出C2點的坐標(biāo);
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com