【題目】某種電子產(chǎn)品共4件,其中有正品和次品.已知從中任意取出一件,取得的產(chǎn)品為次品的概率為.
(1)該批產(chǎn)品有正品________件;
(2)如果從中任意取出2件,利用列表或樹狀圖求取出2件都是正品的概率.
【答案】(1);(2).
【解析】試題分析:(1)由某種電子產(chǎn)品共4件,其中有正品和次品.已知從中任意取出一件,取得的產(chǎn)品為次品的概率為 ,直接利用概率公式求解即可求得答案;
(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與取出2件都是正品的情況,再利用概率公式即可求得答案.
試題解析:(1)∵某種電子產(chǎn)品共4件,從中任意取出一件,取得的產(chǎn)品為次品的概率為;
∴批產(chǎn)品有正品為:
故答案為:3;
(2)畫樹狀圖得:
∵結果共有12種情況,且各種情況都是等可能的,其中兩次取出的都是正品共6種,
∴P(兩次取出的都是正品)
科目:初中數(shù)學 來源: 題型:
【題目】如果一個正整數(shù)能表示為兩個連續(xù)偶數(shù)的平方差,那么稱這個正整數(shù)為“奇巧數(shù)”,如12=,20=,28=,……,因此12,20,28這三個數(shù)都是奇巧數(shù)。
(1)52,72都是奇巧數(shù)嗎?為什么?
(2)設兩個連續(xù)偶數(shù)為2n,2n+2(其中n為正整數(shù)),由這兩個連續(xù)偶數(shù)構造的奇巧數(shù)是8的倍數(shù)嗎?為什么?
(3)研究發(fā)現(xiàn):任意兩個連續(xù)“奇巧數(shù)”之差是同一個數(shù),請給出驗證。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓E是三角形ABC的外接圓, ∠BAC=45°,AO⊥BC于O,且BO=2,CO=3,分別以BC、AO所在直線建立x軸.
(1)求三角形ABC的外接圓直徑;
(2)求過ABC三點的拋物線的解析式;
(3)設P是(2)中拋物線上的一個動點,且三角形AOP為直角三角形,則這樣的點P有幾個?(只需寫出個數(shù),無需解答過程).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】九(1)班數(shù)學興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價與銷售量的相關信息如下表:
時間x(天) | 1≤x<50 | 50≤x≤90 |
售價(元/件) | x+40 | 90 |
每天銷量(件) | 200﹣2x | 200﹣2x |
已知該商品的進價為每件30元,設銷售該商品的每天利潤為y元
(1)求出y與x的函數(shù)關系式;
(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結果.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的方程(a﹣1)x2+2x+a﹣1=0.
(1)若該方程有一根為2,求a的值及方程的另一根;
(2)當a為何值時,方程僅有一個根?求出此時a的值及方程的根.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AC=BC,AB⊥x軸,垂足為A.反比例函數(shù)y= (x>0)的圖象經(jīng)過點C,交AB于點D.已知AB=4,BC=.
(1)若OA=4,求k的值;
(2)連接OC,若BD=BC,求OC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學習概念:
三角形一邊的延長線與三角形另一邊的夾角叫做三角形的外角.如圖1中∠ACD是△AOC的外角,那么∠ACD與∠A、∠O之間有什么關系呢?
∵∠ACD=180°﹣∠ACO,∠A+∠O=180°﹣∠ACO
∴∠ACD=∠A+ ,
結論:三角形的外角等于與它不相鄰的兩個內(nèi)角的 .
問題探究:
(1)如圖2,已知:∠AOB=∠ACP=∠BDP=60°,且AO=BO,則△AOC △OBD;
(2)如圖3,已知∠ACP=∠BDP=45°,且AO=BO,當∠AOB= °,△AOC≌△OBD;
應用結論:
(3)如圖4,∠AOB=90°,OA=OB,AC⊥OP,BD⊥OP,請說明:AC=CD+BD.
拓展應用:
(4)如圖5,四邊形ABCD,AB=BC,BD平分∠ADC,AE∥CD,∠ABC+∠AEB=180°,EB=5,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題的提出:
如果點P是銳角△ABC內(nèi)一動點,如何確定一個位置,使點P到△ABC的三頂點的距離之和PA+PB+PC的值為最小?
問題的轉化:
(1)把ΔAPC繞點A逆時針旋轉60度得到連接這樣就把確定PA+PB+PC的最小值的問題轉化成確定的最小值的問題了,請你利用如圖證明:
;
問題的解決:
(2)當點P到銳角△ABC的三項點的距離之和PA+PB+PC的值為最小時,請你用一定的數(shù)量關系刻畫此時的點P的位置:_____________________________;
問題的延伸:
(3)如圖是有一個銳角為30°的直角三角形,如果斜邊為2,點P是這個三角形內(nèi)一動點,請你利用以上方法,求點P到這個三角形各頂點的距離之和的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com