【題目】如圖,在Rt△ABC中,∠A=90°,點D、E分別在AC、BC上,且CDBC=ACCE,以E為圓心,DE長為半徑作圓,⊙E經(jīng)過點B,與AB、BC分別交于點F、G.
(1)求證:AC是⊙E的切線.
(2)若AF=4,CG=5,求⊙E的半徑;
(3)若Rt△ABC的內(nèi)切圓圓心為I,則IE= .
【答案】
(1)證明:∵CDBC=ACCE,
∴ ,
∵∠DCE=∠ACB,
∴△CDE∽△CAB,
∴∠EDC=∠A=90°,
∴ED⊥AC,
∵點D在⊙E上,
∴AC是⊙E的切線
(2)①如圖1,
過E作EH⊥AB于H,
∴BH=FH,
∵∠A=∠AHE=∠ADE=90°,
∴四邊形AHED是矩形,
∴ED=AH,ED∥AB,
∴∠B=∠DEC,
設(shè)⊙E的半徑為r,則EB=ED=EG=r,
∴BH=FH=AH﹣AF=DE﹣AF=r﹣4,
EC=EG+CG=r+5,
在△BHE和△EDC中,
∵∠B=∠DEC,∠BHE=∠EDC=90°,
∴△BHE∽△EDC,
∴ ,即 ,
∴r=20,
∴⊙E的半徑為20
(3)
【解析】如圖2
過I作IM⊥BC于M,過I作IH⊥AB于H,
由(2)得:FH=BH=r﹣4=20﹣4=16,AB=AF+2BH=4+2×16=36,
BC=2r+5=2×20+5=45,
∴AC= =27,
∵I是Rt△ABC的內(nèi)心,
∴IM= = =9,
∴AH=IM=9,
∴BH=BM=36﹣9=27,
∴EM=27﹣20=7,
在Rt△IME中,由勾股定理得:IE= = = ,
所以答案是: .
【考點精析】本題主要考查了等腰直角三角形和三角形的內(nèi)切圓與內(nèi)心的相關(guān)知識點,需要掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;三角形的內(nèi)切圓的圓心是三角形的三條內(nèi)角平分線的交點,它叫做三角形的內(nèi)心才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】快、慢兩車分別從相距180 km的甲、乙兩地同時出發(fā),沿同一路線勻速行駛,相向而行,快車到達乙地停留一段時間后,按原路原速返回甲地.慢車到達甲地比快車到達甲地早 h,慢車速度是快車速度的一半,快、慢兩車到達甲地后停止行駛,兩車距各自出發(fā)地的路程y(km)與所用時間x(h)的函數(shù)圖象如圖所示,請結(jié)合圖象信息解答下列問題:
(1)請直接寫出快、慢兩車的速度;
(2)求快車返回過程中y(km)與x(h)的函數(shù)關(guān)系式;
(3)兩車出發(fā)后經(jīng)過多長時間相距90 km的路程?直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商家用1200元購進了一批T恤,上市后很快售完,商家又用2800元購進了第二批這種T恤,所購數(shù)量是第一批購進量的2倍,但單價貴了5元.
(1)該商家購進的第一批T恤是多少件?
(2)若兩批T恤按相同的標價銷售,最后剩下20件按八折優(yōu)惠賣出,如果希望兩批T恤全部售完的利潤率不低于16%(不考慮其它因素),那么每件T恤的標價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果商從批發(fā)市場用8000元購進了大櫻桃和小櫻桃各200千克,大櫻桃的進價比小櫻桃的進價每千克多20元.大櫻桃售價為每千克40元,小櫻桃售價為每千克16元.
(1)大櫻桃和小櫻桃的進價分別是每千克多少元?銷售完后,該水果商共賺了多少元錢?
(2)該水果商第二次仍用8000元錢從批發(fā)市場購進了大櫻桃和小櫻桃各200千克,進價不變,但在運輸過程中小櫻桃損耗了20%.若小櫻桃的售價不變,要想讓第二次賺的錢不少于第一次所賺錢的90%,大櫻桃的售價最少應(yīng)為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們已經(jīng)學習過反比例函數(shù)y= 的圖象和性質(zhì),請回顧研究它的過程,對函數(shù)y= 進行探索.下列結(jié)論:
①圖象在第一、二象限,②圖象在第一、三象限,
③圖象關(guān)于y軸對稱,④圖象關(guān)于原點對稱,
⑤當x>0時,y隨x增大而增大;當x<0時,y隨x增大而增大,
⑥當x>0時,y隨x增大而減小;當x<0時,y隨x增大而增大,
是函數(shù)y= 的性質(zhì)及它的圖象特征的是: . (填寫所有正確答案的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD∥BC,AB∥CD,AC,BD交于O點,過O點的直線EF交AD于E點,交BC于F點,且BF=DE,則圖中的全等三角形共有( )
A. 6對 B. 5對 C. 3對 D. 2對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明和小月兩家位于A,B兩處隔河相望,要測得兩家之間的距離,小明設(shè)計方案如下:
①從點A出發(fā)沿河岸畫一條射線AM;
②在射線AM上截取AF=FE;
③過點E作EC∥AB,使B,F(xiàn),C在一條直線上;
④CE的長就是A,B間的距離.
(1)請你說明小明設(shè)計的原理.
(2)如果不借助測量儀,小明的設(shè)計中哪一步難以實現(xiàn)?
(3)你能設(shè)計出更好的方案嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小軍同學在學校組織的社會調(diào)查活動中負責了解他所居住的小區(qū)450戶居民的生活用水情況,他從中隨機調(diào)查了50戶居民的月均用水量(單位:t),并繪制了樣本的頻數(shù)分布表和頻數(shù)分布直方圖(如圖).
(1)請根據(jù)題中已有的信息補全頻數(shù)分布表和頻數(shù)分布直方圖;
月均用水量/t | 頻數(shù) | 百分比 |
2≤x<3 | 2 | 4% |
3≤x<4 | 12 | 24% |
4≤x<5 | ||
5≤x<6 | 10 | 20% |
6≤x<7 | 12% | |
7≤x<8 | 3 | 6% |
8≤x<9 | 2 | 4% |
(2)如果家庭月均用水量“大于或等于4 t且小于7 t”為中等用水量家庭,請你通過樣本估計總體中的中等用水量家庭大約有多少戶.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com