【題目】在開(kāi)展“學(xué)雷鋒社會(huì)實(shí)踐”活動(dòng)中,某校為了解全校1200名學(xué)生參加活動(dòng)的情況,隨機(jī)調(diào)查了50名學(xué)生每人參加活動(dòng)的次數(shù),并根據(jù)數(shù)據(jù)繪成條形統(tǒng)計(jì)圖如下:
(Ⅰ)求這50個(gè)樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
(Ⅱ)根據(jù)樣本數(shù)據(jù),估算該校1200名學(xué)生共參加了多少次活動(dòng).
【答案】
【解析】解:(Ⅰ)觀察條形統(tǒng)計(jì)圖,可知這組樣本數(shù)據(jù)的平均數(shù)是:
。
∵在這組樣本數(shù)據(jù)中,4出現(xiàn)了18次,出現(xiàn)的次數(shù)最多,
∴這組數(shù)據(jù)的眾數(shù)是4。
∵將這組樣本數(shù)據(jù)按從小到大的順序排列,其中處在中間的兩個(gè)數(shù)都是3,
∴這組數(shù)據(jù)的中位數(shù)是3。
(Ⅱ)∵這組樣本數(shù)據(jù)的平均數(shù)是3.3,
∴估計(jì)全校1200人參加活動(dòng)次數(shù)的總體平均數(shù)是3.3,
∴3.3×1200=3960。
∴估計(jì)該校學(xué)生共參加活動(dòng)約為3960次
(Ⅰ)根據(jù)加權(quán)平均數(shù)的公式可以計(jì)算出平均數(shù);根據(jù)眾數(shù)的定義:一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù),中位數(shù):將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個(gè)數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù),即可求出眾數(shù)與中位數(shù)。
(Ⅱ)利用樣本估計(jì)總體的方法,用樣本中的平均數(shù)×1200即可
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】柳州市某校的生物興趣小組在老師的指導(dǎo)下進(jìn)行了多項(xiàng)有意義的生物研究并取得成果.下面是這個(gè)興趣小組在相同的實(shí)驗(yàn)條件下,對(duì)某植物種子發(fā)芽率進(jìn)行研究時(shí)所得到的數(shù)據(jù):
種子數(shù) | 30 | 75 | 130 | 210 | 480 | 856 | 1250 | 2300 |
發(fā)芽數(shù) | 28 | 72 | 125 | 200 | 457 | 814 | 1187 | 2185 |
發(fā)芽頻率 | 0.9333 | 0.9600 | 0.9615 | 0.9524 | 0.9521 | 0.9509 | 0.9496 | 0.9500 |
依據(jù)上面的數(shù)據(jù)可以估計(jì),這種植物種子在該實(shí)驗(yàn)條件下發(fā)芽的概率約是_____(結(jié)果精確到0.01).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)A(0,4),B(1,0),C(5,0),其對(duì)稱(chēng)軸與x軸相交于點(diǎn)M.
(1)求拋物線的解析式和對(duì)稱(chēng)軸;
(2)在拋物線的對(duì)稱(chēng)軸上是否存在一點(diǎn)P,使△PAB的周長(zhǎng)最小?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(c,-2),。求證:這個(gè)二次函數(shù)圖象的對(duì)稱(chēng)軸是x=3.題目中的矩形框部分是一段被墨水染污了無(wú)法辯認(rèn)的文字.
(1)根據(jù)已知和結(jié)論中現(xiàn)有的信息,你能否求出題中的二次函數(shù)解析式?若能,請(qǐng)寫(xiě)出求解過(guò)程,并畫(huà)出二次函數(shù)的圖象;若不能,請(qǐng)說(shuō)明理由.
(2)請(qǐng)你根據(jù)已有的信息,在原題中的矩形框中,填加一個(gè)適當(dāng)?shù)臈l件,把原題補(bǔ)充完整.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了貫徹落實(shí)市委政府提出的“精準(zhǔn)扶貧”精神,某校特制定了一系列幫扶A、B兩貧困村的計(jì)劃,現(xiàn)決定從某地運(yùn)送152箱魚(yú)苗到A、B兩村養(yǎng)殖,若用大小貨車(chē)共15輛,則恰好能一次性運(yùn)完這批魚(yú)苗,已知這兩種大小貨車(chē)的載貨能力分別為12箱/輛和8箱/輛,其運(yùn)往A、B兩村的運(yùn)費(fèi)如表:
車(chē)型 | 目的地 | |
A村(元/輛) | B村(元/輛) | |
大貨車(chē) | ||
800 | 900 | |
小貨車(chē) | 400 | 600 |
(1)求這15輛車(chē)中大小貨車(chē)各多少輛?
(2)現(xiàn)安排其中10輛貨車(chē)前往A村,其余貨車(chē)前往B村,設(shè)前往A村的大貨車(chē)為x輛,前往A、B兩村總費(fèi)用為y元,試求出y與x的函數(shù)解析式.
(3)在(2)的條件下,若運(yùn)往A村的魚(yú)苗不少于100箱,請(qǐng)你寫(xiě)出使總費(fèi)用最少的貨車(chē)調(diào)配方案,并求出最少費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn) A 在函數(shù)y1=-(x>0)的圖象上,點(diǎn) B 在直線 y2=kx+1+k(k 為常數(shù),且 k≥0)上.若 A,B 兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),則稱(chēng)點(diǎn) A,B 為函數(shù) y1,y2 圖象上的一對(duì)“友好點(diǎn)”.請(qǐng)問(wèn)這兩個(gè)函數(shù)圖象上的“友好點(diǎn)”對(duì)數(shù)的情況為( )
A.有1對(duì)或2對(duì)B.只有1對(duì)
C.只有2對(duì)D.有2對(duì)或3對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖 1,在平面直角坐標(biāo)系中,已知拋物線 y=ax2+bx﹣5 與 x 軸交于 A(﹣1,0),B(5, 0)兩點(diǎn),與 y 軸交于點(diǎn) C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn) D 是 y 軸上的一點(diǎn),且以 B,C,D 為頂點(diǎn)的三角形與△ABC 相似,求點(diǎn) D 的坐標(biāo);
(3)如圖 2,CE∥x 軸與拋物線相交于點(diǎn) E,點(diǎn) H 是直線 CE 下方拋物線上的動(dòng)點(diǎn),過(guò)點(diǎn) H且與 y 軸平行的直線與 BC,CE 分別相交于點(diǎn) F,G,試探究當(dāng)點(diǎn) H 運(yùn)動(dòng)到何處時(shí),四邊形CHEF 的面積最大,求點(diǎn) H 的坐標(biāo)及最大面積;
(4)若點(diǎn) K 為拋物線的頂點(diǎn),點(diǎn) M(4,m)是該拋物線上的一點(diǎn),在 x 軸,y 軸上分別找點(diǎn) P,Q,使四邊形 PQKM 的周長(zhǎng)最小,求出點(diǎn) P,Q 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(2,2)請(qǐng)解答下列問(wèn)題:
(1)畫(huà)出△ABC關(guān)于y軸對(duì)稱(chēng)的△A1B1C1,并寫(xiě)出A1的坐標(biāo).
(2)畫(huà)出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C2,并寫(xiě)出A2的坐標(biāo).
(3)畫(huà)出△A2B2C2關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)的△A3B3C3,并寫(xiě)出A3的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,D是BC邊的中點(diǎn),以D為頂點(diǎn)作一個(gè)120°的角,角的兩邊分別交直線AB,AC于M,N兩點(diǎn),以點(diǎn)D為中心旋轉(zhuǎn)∠MDN(∠MDN的度數(shù)不變),若DM與AB垂直時(shí)(如圖①所示),易證BM +CN =BD.
(1)如圖②,若DM與AB不垂直時(shí),點(diǎn)M在邊AB上,點(diǎn)N在邊AC上,上述結(jié)論是否成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說(shuō)明理由;
(2)如圖③,若DM與AB不垂直時(shí),點(diǎn)M在邊AB.上,點(diǎn)N在邊AC的延長(zhǎng)線上,上述結(jié)論是否成立?若不成立,請(qǐng)寫(xiě)出BM,CN,BD之間的數(shù)量關(guān)系,不用證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com