【題目】已知一次函數(shù)y=kx+b的圖象與y=x-1的圖象平行,且經(jīng)過點(diǎn)(2,6).
(1)求一次函數(shù)y=kx+b的表達(dá)式.
(2)求這個(gè)一次函數(shù)y=kx+b與坐標(biāo)軸的兩個(gè)交點(diǎn)坐標(biāo),并在直角坐標(biāo)系中畫出這個(gè)函數(shù)的圖象.
【答案】(1)一次函數(shù)表達(dá)式為:y=x+4;(2)與x軸交點(diǎn)坐標(biāo)是(-4,0),與y軸交點(diǎn)分別是(0,4),畫圖象見解析.
【解析】
(1)由兩直線平行即可得出k值,再由一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征即可得出b的值,此題得解;
(2)將x=0、y=0分別代入一次函數(shù)解析中求出y、x值即可得出交點(diǎn)坐標(biāo),再在平面直角坐標(biāo)系中畫出圖象即可.
(1)∵y=kx+b的圖象與y=x-1的圖象平行
∴k=1
即y=x+b
把(2,6)代入得:2+b=6, b=4
∴此一次函數(shù)表達(dá)式為:y=x+4
(2)y=x+4中,令y=0,則x+4=0,x= -4,得圖象與x軸交點(diǎn)坐標(biāo)是(-4,0)
令x=0,則y=4,得圖象與y軸交點(diǎn)分別是(0,4)
在平面直角坐標(biāo)系中畫出圖象如圖所示,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在解決數(shù)學(xué)問題的過程中,我們常用到“分類討論”的數(shù)學(xué)思想,下面是運(yùn)用分類討論的數(shù)學(xué)思想解決問題的過程,請(qǐng)仔細(xì)閱讀,并解答題目后提出的“探究”.
(提出問題)三個(gè)有理數(shù)a、b、c滿足abc>0,求的值.
(解決問題)由題意得:a,b,c三個(gè)有理數(shù)都為正數(shù)或其中一個(gè)為正數(shù),另兩個(gè)為負(fù)數(shù).
①當(dāng)a,b,c都是正數(shù),即a>0,b>0,c>0時(shí),
則:==1+1+1=3;
②當(dāng)a,b,c有一個(gè)為正數(shù),另兩個(gè)為負(fù)數(shù)時(shí),設(shè)a>0,b<0,c<0,
即:==1+(1)+(1)=1,所以的值為3或1.
(探究)請(qǐng)根據(jù)上面的解題思路解答下面的問題:
(1)已知a<0,b>0,c>0,則 , , ;
(2)三個(gè)有理數(shù)a,b,c滿足abc<0,求的值;
(3)已知|a|=3,|b|=1,且a<b,求a+b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名足球守門員練習(xí)折返跑,從球門線出發(fā),向前記作正數(shù),返回記作負(fù)數(shù),他的記錄如下:(單位:米)+5,-3,+10,-8,-6,+12,-10
(1)守門員最后是否回到了球門線的位置?
(2)在練習(xí)過程中,守門員離開球門最遠(yuǎn)距離是多少米?
(3)守門員全部練習(xí)結(jié)束后,他共跑了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于F,連接CF.
(1)求證:AD=AF;
(2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,點(diǎn)F為BE的中點(diǎn),連接CF,DF.
(1)如圖1,當(dāng)點(diǎn)D在AB上,點(diǎn)E在AC上時(shí)
①證明:△BFC是等腰三角形;
②請(qǐng)判斷線段CF,DF的關(guān)系?并說明理由;
(2)如圖2,將圖1中的△ADE繞點(diǎn)A旋轉(zhuǎn)到圖2位置時(shí),請(qǐng)判斷(1)中②的結(jié)論是否仍然成立?并證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,把矩形沿AC折疊,點(diǎn)B落在點(diǎn)E處,AE與DC的交點(diǎn)為O,連接DE.
(1)求證:△ADE≌△CED;
(2)求證:DE∥AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校計(jì)劃開設(shè)四門選修課:樂器、舞蹈、繪畫、書法.為提前了解學(xué)生的選修情況,學(xué)校采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的學(xué)生必須選擇而且只能選擇其中一門).對(duì)調(diào)查結(jié)果進(jìn)行了整理,繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給信息解答下列問題:
(1)本次調(diào)查的學(xué)生共有 人,在扇形統(tǒng)計(jì)圖中,m的值是 ;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)在被調(diào)查的學(xué)生中,選修書法的有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加某社區(qū)組織的書法活動(dòng),請(qǐng)直接寫出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在銳角△ABC中,∠ABC=45°,高線AD、BE相交于點(diǎn)F.
(1)判斷BF與AC的數(shù)量關(guān)系并說明理由;
(2)如圖2,將△ACD沿線段AD對(duì)折,點(diǎn)C落在BD上的點(diǎn)M,AM與BE相交于點(diǎn)N,當(dāng)DE∥AM時(shí),判斷NE與AC的數(shù)量關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】廣州火車南站廣場(chǎng)計(jì)劃在廣場(chǎng)內(nèi)種植A,B兩種花木共 6600棵,若A花木數(shù)量是B花木數(shù)量的2倍少600棵.
(1)A,B兩種花木的數(shù)量分別是多少棵?
(2)如果園林處安排26人同時(shí)種植這兩種花木,每人每天能種植A花木60棵或B花木40棵,應(yīng)分別安排多少人種植A花木和B花木,才能確保同時(shí)完成各自的任務(wù)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com