【題目】在解決數(shù)學(xué)問(wèn)題的過(guò)程中,我們常用到“分類討論”的數(shù)學(xué)思想,下面是運(yùn)用分類討論的數(shù)學(xué)思想解決問(wèn)題的過(guò)程,請(qǐng)仔細(xì)閱讀,并解答題目后提出的“探究”.
(提出問(wèn)題)三個(gè)有理數(shù)a、b、c滿足abc>0,求的值.
(解決問(wèn)題)由題意得:a,b,c三個(gè)有理數(shù)都為正數(shù)或其中一個(gè)為正數(shù),另兩個(gè)為負(fù)數(shù).
①當(dāng)a,b,c都是正數(shù),即a>0,b>0,c>0時(shí),
則:==1+1+1=3;
②當(dāng)a,b,c有一個(gè)為正數(shù),另兩個(gè)為負(fù)數(shù)時(shí),設(shè)a>0,b<0,c<0,
即:==1+(1)+(1)=1,所以的值為3或1.
(探究)請(qǐng)根據(jù)上面的解題思路解答下面的問(wèn)題:
(1)已知a<0,b>0,c>0,則 , , ;
(2)三個(gè)有理數(shù)a,b,c滿足abc<0,求的值;
(3)已知|a|=3,|b|=1,且a<b,求a+b的值.
【答案】(1)-1;1;1;(2)1或-3(3)2或4.
【解析】
(1)根據(jù)絕對(duì)值的性質(zhì)即可求解;
(2)分2種情況討論:①當(dāng)a,b,c都是負(fù)數(shù),即a<0,b<0,c<0時(shí);②a,b,c有一個(gè)為負(fù)數(shù),另兩個(gè)為正數(shù)時(shí),設(shè)a<0,b>0,c>0,分別求解即可;
(3)利用絕對(duì)值的代數(shù)意義,以及a小于b求出a與b的值,即可確定出a+b的值.
(1)∵a<0,b>0,c>0,
∴,,
則-1,1,1;
故填:-1;1;1;
(2)∵abc<0,
∴a,b,c都是負(fù)數(shù)或其中一個(gè)為負(fù)數(shù),另兩個(gè)為正數(shù),
∴①當(dāng)a,b,c都是負(fù)數(shù),即a<0,b<0,c<0時(shí),
則==-1-1-1=-3;
②a,b,c有一個(gè)為負(fù)數(shù),另兩個(gè)為正數(shù)時(shí),設(shè)a<0,b>0,c>0,
則==1+1+1=1.
(3)∵|a|=3,|b|=1,且a<b,
∴a=3,b=1或1,
則a+b=2或4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=a( x+1 )2-4a(a<0)與x軸交于點(diǎn)A、B(A在B的左側(cè)),與y軸交于點(diǎn)C,CD∥x軸交拋物線于點(diǎn)D,連接BD交拋物線的對(duì)稱軸于點(diǎn)E,連接BC、CE.
(1)拋物線頂點(diǎn)坐標(biāo)為 (用含a的代數(shù)式表示),A點(diǎn)坐標(biāo)為 ,
(2)當(dāng)△DCE的面積為時(shí),求a的值;
(3)當(dāng)△BCE為直角三角形時(shí),求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一矩形紙片OABC放在平面直角坐標(biāo)系中,O(0,0),A(6,0),C(0,3),動(dòng)點(diǎn)F從點(diǎn)O出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度沿OC向終點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)秒時(shí),動(dòng)點(diǎn)E從點(diǎn)A出發(fā)以相同的速度沿AO向終點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)E、F其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng)設(shè)點(diǎn)E的運(yùn)動(dòng)時(shí)間為t:(秒)
(1)OE= ,OF= (用含t的代數(shù)式表示)
(2)當(dāng)t=1時(shí),將△OEF沿EF翻折,點(diǎn)O恰好落在CB邊上的點(diǎn)D處
①求點(diǎn)D的坐標(biāo)及直線DE的解析式;
②點(diǎn)M是射線DB上的任意一點(diǎn),過(guò)點(diǎn)M作直線DE的平行線,與x軸交于N點(diǎn),設(shè)直線MN的解析式為y=kx+b,當(dāng)點(diǎn)M與點(diǎn)B不重合時(shí),S為△MBN的面積,當(dāng)點(diǎn)M與點(diǎn)B重合時(shí),S=0.求S與b之間的函數(shù)關(guān)系式,并求出自變量b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,,分別表示使用一種白熾燈和一種節(jié)能燈的費(fèi)用(元,分別用y1與y2表示)與照明時(shí)間(小時(shí))的函數(shù)圖象,假設(shè)兩種燈的使用壽命都是2000小時(shí),照明效果一樣.
(1)根據(jù)圖象分別求出,對(duì)應(yīng)的函數(shù)(分別用y1與y2表示)關(guān)系式;
(2)對(duì)于白熾燈與節(jié)能燈,請(qǐng)問(wèn)該選擇哪一種燈,使用費(fèi)用會(huì)更。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有理數(shù)a,b,c在數(shù)軸上的位置如圖所示,請(qǐng)根據(jù)圖中信息,回答下列問(wèn)題:
(1)a,b,c三個(gè)數(shù)中,為正數(shù)的數(shù)是 ,為負(fù)數(shù)的數(shù)是 ;
(2)將|a|,|b|,|c|三個(gè)數(shù)用不等號(hào)“<”連接起來(lái)是 ;
(3)化簡(jiǎn):|b﹣a|﹣|b+c|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為4,甲、乙兩動(dòng)點(diǎn)分別從正方形的頂點(diǎn)同時(shí)沿正方形的邊開始移動(dòng),甲點(diǎn)依順時(shí)針?lè)较颦h(huán)行,乙點(diǎn)依逆時(shí)針?lè)较颦h(huán)行.若乙的速度是甲的速度的3倍,則它們第2 019次相遇在( )
A. 邊上 B. 邊上 C. 邊上 D. 邊上
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a,b,c為非零的實(shí)數(shù),則的可能值的個(gè)數(shù)為( 。
A. 4 B. 5 C. 6 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)準(zhǔn)備進(jìn)一批兩種不同型號(hào)的衣服,已知購(gòu)進(jìn)A種型號(hào)衣服9件,B種型號(hào)衣服10件,則共需1810元;若購(gòu)進(jìn)A種型號(hào)衣服12件,B種型號(hào)衣服8件,共需1880元;已知銷售一件A型號(hào)衣服可獲利18元,銷售一件B型號(hào)衣服可獲利30元,要使在這次銷售中獲利不少于699元,且A型號(hào)衣服不多于28件.
(1)求A、B型號(hào)衣服進(jìn)價(jià)各是多少元?
(2)若已知購(gòu)進(jìn)A型號(hào)衣服是B型號(hào)衣服的2倍還多4件,則商店在這次進(jìn)貨中可有幾種方案并簡(jiǎn)述購(gòu)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象與y=x-1的圖象平行,且經(jīng)過(guò)點(diǎn)(2,6).
(1)求一次函數(shù)y=kx+b的表達(dá)式.
(2)求這個(gè)一次函數(shù)y=kx+b與坐標(biāo)軸的兩個(gè)交點(diǎn)坐標(biāo),并在直角坐標(biāo)系中畫出這個(gè)函數(shù)的圖象.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com