【題目】實踐與探究
在平面直角坐標系中,四邊形AOBC是矩形,點(0,0),點A(5,0),點B(0,3).以點A為中心,順時針旋轉矩形AOBC,得到矩形ADEF,點O,B,C的對應點分別為D,E,F.
(1)如圖(1),當點D落在BC邊上時,求點D的坐標;
(2)如圖(2),當點D落在線段BE上時,AD與BC交于點H.
①求證:ΔADB≌ΔAOB;
②求點H的坐標.
【答案】(1)D(1,3);(2)①證明見解析;②H(,3).
【解析】
(1)如圖①,在Rt△ACD中,根據(jù)勾股定理求出CD,即可解決問題;
(2)①根據(jù)旋轉可知,OA=DA,則根據(jù)HL證明全等即可;
②先證明△BDH≌△ACH,得DH=CH,設CH=x,則AH =5-x,在Rt△AHC中,根據(jù)AH2=HC2+AC2,構建方程求出x即可解決問題;
解:(1)∵A(5,0),B(0,3),
∴OA=5,OB=3,
∵四邊形AOBC是矩形,
∴OB=AC=3,OA=BC=5 ∠C=90°,
∵矩形ADEF是由矩形AOBC旋轉得到的,
∴AD=OA=5 .
在RtΔACD中
CD= ,
∴BD=1,
∴D(1,3) .
(2)①由旋轉可知:
OA=DA,∠AOB=∠ADE=90°,
∴∠AOB=∠ADB=90°,
在Rt△AOB與Rt△ADB中
,
∴△ADB≌△AOB(HL);
②∵△ADB≌△AOB(HL),
∴BD=BO=AC ,
在△BDH與△ACH中
,
∴△BDH≌△ACH(AAS),
∴DH=CH,
∵DH+AH=AD=5,
∴CH+AH=5,
設CH=,則AH=,
在Rt△ACH中
,
解得:,
∴BH=,
∴H(,3).
科目:初中數(shù)學 來源: 題型:
【題目】為了節(jié)省材料,某水產養(yǎng)殖戶利用水庫的一角兩邊為邊,用總長為的圍網(wǎng)在水庫中圍成了如圖所示的①②③三塊區(qū)域,其中區(qū)域①為直角三角形,區(qū)域②③為矩形,而且這三塊區(qū)域的面積相等,四邊形為直角梯形.
(1)設的長度為,則的長為______;
(2)設四邊形的面積為,求與之間的函數(shù)關系式,并注明自變量的取值范圍;
(3)為何值時,有最大值?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,動點P從點B出發(fā),在BA邊上以每秒5cm的速度向點A勻速運動,同時動點Q從點C出發(fā),在CB邊上以每秒4cm的速度向點B勻速運動,運動時間為t秒(0<t<2),連接PQ.
(1)若△BPQ與△ABC相似,求t的值;
(2)試探究t為何值時,△BPQ的面積是cm2;
(3)直接寫出t為何值時,△BPQ是等腰三角形;
(4)連接AQ,CP,若AQ⊥CP,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的內切圓,切點分別為D、E、F,∠A=80°,點P為⊙O上任意一點(不與E、F重合),則∠EPF=______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,一個扇形紙片的圓心角為90°,半徑為6.如圖2,將這張扇形紙片折疊,使點A與點O恰好重合,折痕為CD,圖中陰影為重合部分,則陰影部分的面積為_____.(答案用根號表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校八年級學生小陽,小杰和小凡到某超市參加了社會實踐活動,在活動中他們參與了某種水果的銷售工作,已知該水果的進價為10元/千克,下面是他們在活動結束后的對話.
小陽:如果以12元/千克的價格銷售,那么每天可售出300千克.
小杰:如果以15元/千克的價格銷售,那么每天可獲取利潤750元.
小凡:我通過調查驗證發(fā)現(xiàn)每天的銷售量y(千克)與銷售單價x(元)之間存在一次函數(shù)關系.
(1)求y(千克)與x(元)(x>0)的函數(shù)關系式;
(2)當銷售單價為何值時,該超市銷售這種水果每天獲得的利潤達600元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題提出:如圖,已知:線段AB,試在平面內找到符合條件的所有點C,
使∠ACB=30°。(利用直尺和圓規(guī)作圖,保留作圖痕跡,不寫作法).
嘗試解決:為了解決這個問題,下面給出一種解題思路:先作出等邊三角形AOB,然后以點O 為圓心,OA長為半徑作⊙O,則優(yōu)弧AB上的點即為所要求作的點(點A、B除外),根據(jù)對稱性,在AB的另一側符合條件的點C易得。請根據(jù)提示,完成作圖.
自主探索:在平面直角坐標系中,已知點A(3,0)、B(-1,0),點C是y軸上的一個動點,當∠BCA=45°時,點C的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在梯形中,,交邊于點.
(1)當點與恰好重合時(如圖1),求的長;
(2)問:是否可能使、與都相似?若能,請求出此時的長;若不能,請說明理由(如圖2).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,將一塊等腰直角三角板(△ABC)按如圖所示放置,若AO=2,OC=1,∠ACB=90°.
(1)直接寫出點B的坐標是 ;
(2)如果拋物線l:y=ax2﹣ax﹣2經過點B,試求拋物線l的解析式;
(3)把△ABC繞著點C逆時針旋轉90°后,頂點A的對應點A1是否在拋物線l上?為什么?
(4)在x軸上方,拋物線l上是否存在一點P,使由點A,C,B,P構成的四邊形為中心對稱圖形?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com