【題目】如圖,RtABC中,∠ACB90°,AC6cm,BC8cm,動點P從點B出發(fā),在BA邊上以每秒5cm的速度向點A勻速運動,同時動點Q從點C出發(fā),在CB邊上以每秒4cm的速度向點B勻速運動,運動時間為t秒(0t2),連接PQ

1)若BPQABC相似,求t的值;

2)試探究t為何值時,BPQ的面積是cm2;

3)直接寫出t為何值時,BPQ是等腰三角形;

4)連接AQ,CP,若AQCP,直接寫出t的值.

【答案】1t=1,t;(2t1t2;(3 當(dāng)t時,BPQ是等腰三角形;(4t

【解析】

1)由勾股定理可求AB的長,分兩種情況討論,由相似三角形的性質(zhì)可求解;

2)過點PPEBCE,由平行線分線段成比例可得PE=3t,由三角形的面積公式列出方程可求解;

3)分三種情況討論,由等腰三角形的性質(zhì)可求解;

4)過PPMBC于點M,AQ,CP交于點N,則有PB=5t,PM=3t,MC=8-4t,根據(jù)ACQ∽△CMP,得出ACCM=CQMP,代入計算即可.

1)∵∠ACB90°,AC6cm,BC8cm,

AB10cm

∵△BPQABC相似,且∠B=∠B

,

當(dāng)時,

,

t1,

當(dāng)

t;

2)如圖1,過點PPEBCE,

PEAC,

PE3t,.

SBPQ×84t×3t,

t1t2;

3)①當(dāng)PBPQ時,如圖1,過PPEBQ

BEBQ42t,PB5t

由(2)可知PE3t,

BE4t

4t42t,

t

②當(dāng)PBBQ時,即5t84t,

解得:t,

③當(dāng)BQPQ時,如圖2,過QQGABG,

BGPBtBQ84t,

∵△BGQ∽△ACB

,

解得:t

綜上所述:當(dāng)t時,BPQ是等腰三角形;

4)過PPMBC于點M,AQ,CP交于點N,如圖3所示:則PB5t

ACBC

∴△PMB∽△ACB,

BM4tPM3t,且BQ84t,BC8,

MC84t,CQ4t,

∵∠NAC+NCA90°,∠PCM+NCA90°,

∴∠NAC=∠PCM

∵∠ACQ=∠PMC,

∴△ACQ∽△CMP,

,

t

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+5x軸交于A(﹣1,0),B5,0)兩點(點A在點B的左側(cè)),與y軸交于點C

1)求拋物線的解析式;

2)點D是第一象限內(nèi)拋物線上的一個動點(與點C,B不重合),過點DDFx軸于點F,交直線BC于點E,連接BD,直線BC能否把△BDF分成面積之比為23的兩部分?若能,請求出點D的坐標;若不能,請說明理由.

3)若M為拋物線對稱軸上一動點,使得△MBC為直角三角形,請直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場將每件進價為80元的A商品按每件100元出售,一天可售出128件.經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品的銷售單價每降低1元,其日銷量可增加8件.設(shè)該商品每件降價x元,商場一天可通過A商品獲利潤y元.

(1)求y與x之間的函數(shù)解析式(不必寫出自變量x的取值范圍)

(2)A商品銷售單價為多少時,該商場每天通過A商品所獲的利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】泉州市旅游資源豐富,①清源山、②開元寺、③崇武古城三個景區(qū)是人們節(jié)假日玩的熱點景區(qū),張老師對八(1)班學(xué)生五·一小長假隨父母到這三個景區(qū)游玩的計劃做了全面調(diào)查,調(diào)查分四個類別:A、游三個景區(qū);B,游兩個景區(qū);C,游一個景區(qū):D,不到這三個景區(qū)游玩現(xiàn)根據(jù)調(diào)查結(jié)果繪制了不完整的條形統(tǒng)計圖和廟形統(tǒng)計圖,請結(jié)合圖中信息解答下列問題:

1)八(1)班共有學(xué)生   人在扇形統(tǒng)計圖中,表示B類別的扇形的圓心角的度數(shù)為   ;

2)請將條形統(tǒng)計圖補充完整;

3)若小華、小剛兩名同學(xué),各自從三個最區(qū)中隨機選一個作為51日游玩的景區(qū),請用樹狀圖或列表法求他們選中同個景區(qū)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,已知AB2,∠B30°,AC.則SABC_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(﹣1,2),且與x軸交點的橫坐標為x1、x2,其中﹣2<x1<﹣1、0<x2<1下列結(jié)論:①4a﹣2b+c<02a﹣b<0abc>0b2+8a>4ac正確的結(jié)論是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程.

1)證明該方程一定有兩個不相等的實數(shù)根;

2)設(shè)該方程兩根為x1、x2x1<x2.

①當(dāng)時,試確定y值的范圍;

②如圖,平面直角坐標系中有三點A、BC,坐標分別為(x1,0)、(x2,3)、(7,0.以點C為圓心,2個單位長度為半徑的圓與直線AB相切,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實踐與探究

在平面直角坐標系中,四邊形AOBC是矩形,點(0,0),點A(5,0),點B(0,3).以點A為中心,順時針旋轉(zhuǎn)矩形AOBC,得到矩形ADEF,點O,B,C的對應(yīng)點分別為D,EF.

(1)如圖(1),當(dāng)點D落在BC邊上時,求點D的坐標;

(2)如圖(2),當(dāng)點D落在線段BE上時,ADBC交于點H.

①求證:ΔADBΔAOB;

②求點H的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線軸、軸分別交于點、,拋物線經(jīng)過、兩點,且對稱軸為直線.

(1)求拋物線的表達式;

(2)如果點是這拋物線上位于軸下方的一點,且△的面積是.求點的坐標.

查看答案和解析>>

同步練習(xí)冊答案