【題目】已知線段AB=(為常數(shù)),點C為直線AB上一點,點P、Q分別在線段BC、AC上,且滿足CQ=2AQ,CP=2BP.

(1)如圖,當(dāng)點C恰好在線段AB中點時,則PQ=_______(用含的代數(shù)式表示);

(2)若點C為直線AB上任一點,則PQ長度是否為常數(shù)?若是,請求出這個常數(shù);若不是,請說明理由;

(3)若點C在點A左側(cè),同時點P在線段AB上(不與端點重合),請判斷2AP+CQ-2PQ1的大小關(guān)系,并說明理由。

【答案】(1);(2);(3)2AP+CQ-2PQ<1

【解析】

(1)設(shè)AQ=x,BP=y,則CQ=2x,CP=2y.由AB=AQ+CQ+CP+PB= m,得到x+y=,由PQ=QC+CP=2x+2y即可得到結(jié)論;

(2)分五種情況討論:C在線段AB上;CA的左邊;CB的右邊;BC重合,AC重合.

(3)設(shè)AQ=xBP=y,則CQ=2x,CP=2y.根據(jù)(2)得到PQ=AP=PQAQ=

代入2AP+CQ-2PQ即可得到結(jié)論.

(1)設(shè)AQ=x,BP=y,則CQ=2xCP=2y

AB=AQ+CQ+CP+PB= m,∴x+2x+2y+y=m,∴x+y=,PQ=QC+CP=2x+2y=2(x+y)=

(2)分五種情況討論:

C在線段AB上,由(1)可得:PQ=

②若CA的左邊,如圖1.

設(shè)AQ=x,BP=y,則CQ=2x,CP=2y

AB=CBCA= (CP+PB)-(CQ+AQ)=m,∴(2y+y)-(x+2x)=m,∴yx=PQ=CPCQ=2y-2x=2(yx)=

CB的右邊,如圖2.

設(shè)AQ=x,BP=y,則CQ=2x,CP=2y

AB=CACB= (CQ+AQ)-(CP+PB) =m,∴(2x+x)-(2y+y)=m,∴xy=,PQ= CQCP=2x-2y=2(xy)=

BC重合,則PB也重合,如圖3.

設(shè)AQ=x,則CQ=BQ=2x,CP=2BP=0,∴PQ=BQ=2x,AB=3x=m,∴PQ=

AC重合,則QA也重合,如圖4.

設(shè)BP=y,則CQ=AQ=0,CP=2BP=2y,∴PQ=CP=2yAB=3y=m,∴PQ=

綜上所述C為直線AB上任一點PQ長度為常數(shù)

(3)如圖1.設(shè)AQ=x,BP=y,則CQ=2xCP=2yPQ=CPCQ=2y-2x=2(yx)=

AP=PQAQ=.2AP+CQ-2PQ==0,∴2AP+CQ-2PQ<1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCF,DECF,DEBC交于點P,若∠ABC=70°,CDE=130°.

(1)試判斷∠ABP與∠BPD之間的數(shù)量關(guān)系,并說明理由;

(2)求∠BCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,一元二次方程x2=﹣1沒有實數(shù)根,即不存在一個實數(shù)的平方等于﹣1.若我們規(guī)定一個新數(shù)“i”,使其滿足i2=﹣1(即方程x2=﹣1有一個根為i).并且進(jìn)一步規(guī)定:一切實數(shù)可以與新數(shù)進(jìn)行四則運算,且原有運算律和運算法則仍然成立,于是有i1=i,i2=﹣1,i3=i2i=﹣i,i4=(i22=(﹣1)2=1,從而對于任意正整數(shù)n,我們可以得到i4n+1=i4ni=i,同理可得i4n+2=﹣1,i4n+3=﹣i,i4n=1.

計算:(1)i.i2.i3.i4
2i+i2+i3+i4+…+i2017+i2018

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個用硬紙板制作的長方體包裝盒展開圖已知它的底面形狀是正方形,高為12cm

(1)制作這樣的包裝盒需要多少平方厘米的硬紙板?

(2)1平方米硬紙板價格為5則制作10個這的包裝盒需花費多少錢?(不考慮邊角損耗)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,MENF分別垂直平分ABAC.

(1)BC =10cm,試求△AMN的周長.

(2)△ABC中,AB = AC,∠BAC = 100°,求∠MAN的度數(shù).

(3) (2) 中,若無AB = AC的條件,你還能求出∠MAN的度數(shù)嗎?若能,請求出;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=2x-4

(1)畫出函數(shù)的圖象;

(2)判斷點A(1,-2),B(2,1)是否在該函數(shù)的圖象上.

(3)已知點A(-2,b)在該函數(shù)圖像上,求b值;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,直線AB:y=﹣x+by軸于A(0,1),交x軸于點B.過點E(1,0)作x軸的垂線EFAB于點D,P是直線EF上一動點,且在點D的上方,設(shè)P(1,n).

(1)直線AB的表達(dá)式為__________________;

(2)①求△ABP的面積(用含n的代數(shù)式表示);

②當(dāng)SABP=2時,求點P的坐標(biāo);

③在②的條件下,以PB為邊在第一象限作等腰直角三角形BPC,請直接寫出點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點O(0,0),B(1,2).

(1)若點Ay軸的正半軸上,且三角形OAB的面積為2,求點A的坐標(biāo);

(2)若點A(3,0),BCOA,BC=OA,求點C的坐標(biāo);

(3)若點A(3,0),點D(3,-4),求四邊形ODAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于實數(shù)a,我們規(guī)定:用符號表示不大于的最大整數(shù),稱a的根整數(shù),例如:,=3

(1)仿照以上方法計算:=______;=_____

(2),寫出滿足題意的x的整數(shù)值______

如果我們對a連續(xù)求根整數(shù),直到結(jié)果為1為止.例如:對10連續(xù)求根整數(shù)2 =1,這時候結(jié)果為1

(3)100連續(xù)求根整數(shù),____次之后結(jié)果為1

(4)只需進(jìn)行3次連續(xù)求根整數(shù)運算后結(jié)果為1的所有正整數(shù)中,最大的是____

查看答案和解析>>

同步練習(xí)冊答案