【題目】如圖,在△ABC中,AB=AC,以AB為直徑的圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長(zhǎng)AE至點(diǎn)F,使EF=AE,連接FB,FC.
(1)求證:四邊形ABFC是菱形;
(2)若AD=7,BE=2,求半圓和菱形ABFC的面積.
【答案】(1)見解析(2)8π,8
【解析】
(1)根據(jù)對(duì)角線相互平分的四邊形是平行四邊形,證明是平行四邊形,再根據(jù)鄰邊相等的平行四邊形是菱形即可證明;
(2)設(shè)CD=x,連接BD.利用勾股定理構(gòu)建方程即可解決問題;
(1)證明:∵AB是直徑,
∴∠AEB=90°,
∴AE⊥BC,
∵AB=AC,
∴BE=CE,
∵AE=EF,
∴四邊形ABFC是平行四邊形,
∵AC=AB,
∴四邊形ABFC是菱形.
(2)設(shè)CD=x.連接BD.
∵AB是直徑,
∴∠ADB=∠BDC=90°,
∴AB2-AD2=CB2-CD2,
∴(7+x)2-72=42-x2,
解得x=1或-8(舍棄)
∴AC=8,BD==,
∴S菱形ABFC=AC×BD=8.
∴S半圓=π42=8π.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在2014年巴西世界杯足球賽前夕,某體育用品店購(gòu)進(jìn)一批單價(jià)為40元的球服,如果按單價(jià)60元銷售,那么一個(gè)月內(nèi)可售出240套.根據(jù)銷售經(jīng)驗(yàn),提高銷售單價(jià)會(huì)導(dǎo)致銷售量的減少,即銷售單價(jià)每提高5元,銷售量相應(yīng)減少20套.設(shè)銷售單價(jià)為x(x≥60)元,銷售量為y套.[參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是(,)].
(1)求出y與x的函數(shù)關(guān)系式.
(2)當(dāng)銷售單價(jià)為多少元時(shí),月銷售額為14000元;
(3)當(dāng)銷售單價(jià)為多少元時(shí),才能在一個(gè)月內(nèi)獲得最大利潤(rùn)?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《如果想毀掉一個(gè)孩子,就給他一部手機(jī)!》這是2017年微信圈一篇熱傳的文章.國(guó)際上,法國(guó)教育部宣布從 2018 年9月新學(xué)期起小學(xué)和初中禁止學(xué)生使用手機(jī).為了解學(xué)生手機(jī)使用情況,某學(xué)校開展了“手機(jī)伴我健康行”主題活動(dòng),他們隨機(jī)抽取部分學(xué)生進(jìn)行“使用手機(jī)目的”和“每周使用手機(jī)的時(shí)間”的問卷調(diào)查,并繪制成如圖①,②的 統(tǒng)計(jì)圖,已知“查資料”的人數(shù)是 40人.請(qǐng)你根據(jù)以上信息解答下列問題:
(1)在扇形統(tǒng)計(jì)圖中,“玩游戲”對(duì)應(yīng)的百分比為______,圓心角度數(shù)是______度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有學(xué)生2100人,估計(jì)每周使用手機(jī)時(shí)間在2 小時(shí)以上(不含2小時(shí))的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A(﹣2,2)和點(diǎn)B(﹣3,﹣2)的位置如圖所示.
(1)作出線段AB關(guān)于y軸對(duì)稱的線段A′B′,并寫出點(diǎn)A、B的對(duì)稱點(diǎn)A′、B′的坐標(biāo);
(2)連接AA′和BB′,請(qǐng)?jiān)趫D中畫一條線段,將圖中的四邊形AA′B′B分成兩個(gè)圖形,其中一個(gè)是軸對(duì)稱圖形,另一個(gè)是中心對(duì)稱圖形,并且線段的一個(gè)端點(diǎn)為四邊形的頂點(diǎn),另一個(gè)端點(diǎn)在四邊形一邊的格點(diǎn)上.(每個(gè)小正方形的頂點(diǎn)均為格點(diǎn)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A在線段BD上,在BD的同側(cè)作等腰Rt△ABC和等腰Rt△ADE,其中∠ABC=∠AED=90°,CD與BE、AE分別交于點(diǎn)P、M.對(duì)于下列結(jié)論:①△CAM∽△DEM;②CD=2BE;③MPMD=MAME;④2CB2=CPCM.其中正確的是( 。
A. ①②B. ①②③C. ①②③④D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)學(xué)生共人,為了解這個(gè)年級(jí)學(xué)生的體能,從中抽取名學(xué)生進(jìn)行分鐘的跳繩測(cè)試,結(jié)果統(tǒng)計(jì)的頻率分布如圖所示,其中從左至右前四個(gè)小長(zhǎng)方形的高依次為 ,如果跳繩次數(shù)不少于次為優(yōu)秀,根據(jù)這次抽查的結(jié)果,估計(jì)全年級(jí)達(dá)到跳繩優(yōu)秀的人數(shù)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】央視“經(jīng)典詠流傳”開播以來受到社會(huì)廣泛關(guān)注.我市某校就“中華文化我傳承——地方戲曲進(jìn)校園”的喜愛情況進(jìn)行了隨機(jī)調(diào)查,對(duì)收集的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩副尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖所提供的信息解答下列問題:
圖中A表示“很喜歡”,B表示“喜歡”,C表示“一般”,D表示“不喜歡”.
(1)被調(diào)查的總?cè)藬?shù)是_____________人,扇形統(tǒng)計(jì)圖中C部分所對(duì)應(yīng)的扇形圓心角的度數(shù)為_______.
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校共有學(xué)生1800人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中A類有__________人;
(4)在抽取的A類5人中,剛好有3個(gè)女生2個(gè)男生,從中隨機(jī)抽取兩個(gè)同學(xué)擔(dān)任兩角色,用樹形圖或列表法求出被抽到的兩個(gè)學(xué)生性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在銳角中,延長(zhǎng)到點(diǎn),點(diǎn)是邊上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作直線,分別交、的平分線于,兩點(diǎn),連接、.在下列結(jié)論中.①;②;③若,,則的長(zhǎng)為6;④當(dāng)時(shí),四邊形是矩形.其中正確的是( )
A. ①④B. ①②C. ①②③D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游樂園有一個(gè)直徑為16米的圓形噴水池,噴水池的周邊有一圈噴水頭,噴出的水柱為拋物線,在距水池中心3米處達(dá)到最高,高度為5米,且各方向噴出的水柱恰好在噴水池中心的裝飾物處匯合.如圖所示,以水平方向?yàn)?/span>x軸,噴水池中心為原點(diǎn)建立直角坐標(biāo)系.
(1)求水柱所在拋物線(第一象限部分)的函數(shù)表達(dá)式;
(2)王師傅在噴水池內(nèi)維修設(shè)備期間,噴水管意外噴水,為了不被淋濕,身高1.8米的王師傅站立時(shí)必須在離水池中心多少米以內(nèi)?
(3)經(jīng)檢修評(píng)估,游樂園決定對(duì)噴水設(shè)施做如下設(shè)計(jì)改進(jìn):在噴出水柱的形狀不變的前提下,把水池的直徑擴(kuò)大到32米,各方向噴出的水柱仍在噴水池中心保留的原裝飾物(高度不變)處匯合,請(qǐng)?zhí)骄繑U(kuò)建改造后噴水池水柱的最大高度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com