【題目】如圖,對(duì)稱軸為直線的拋物線軸交于、兩點(diǎn),與軸交于點(diǎn),其中點(diǎn)的坐標(biāo)為

求該拋物線的解析式;

若點(diǎn)在拋物線上,且,求點(diǎn)的坐標(biāo);

設(shè)點(diǎn)是線段上的動(dòng)點(diǎn),作軸交拋物線于點(diǎn),求線段長(zhǎng)度的最大值.

【答案】y=(2) 點(diǎn)的坐標(biāo)為:,或;(3) 當(dāng)時(shí),有最大值

【解析】

(1)由對(duì)稱軸確定h的值,代入點(diǎn)A坐標(biāo)即可求解;
(2)設(shè)出點(diǎn)P坐標(biāo)并表示△POC的面積根據(jù)題意列出方程求解即可;
(3)設(shè)出點(diǎn)Q,D坐標(biāo)并表示線段QD的長(zhǎng)度,建立二次函數(shù),運(yùn)用二次函數(shù)的最值求解即可.

解:由題意對(duì)稱軸為直線,可設(shè)拋物線解析式:,把點(diǎn)代入可得,

,如圖

,當(dāng)時(shí),

所以點(diǎn),

,解得:,或,

∴點(diǎn),

設(shè)點(diǎn)

此時(shí),

,

,

解得:,

,或,

所以點(diǎn)的坐標(biāo)為:,或如圖,

設(shè)直線的解析式為:,

,代入得:,

解得:

所以直線,

設(shè)點(diǎn),點(diǎn)

所以:,

所以當(dāng)時(shí),有最大值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,,要計(jì)算,兩地的距離,甲、乙、丙、丁四組同學(xué)分別測(cè)量了部分線段的長(zhǎng)度和角的度數(shù),得到以下四組數(shù)據(jù):甲:,;乙:,,;丙:;。,.其中能求得,兩地距離的有(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,AD為△ABC的中線,延長(zhǎng)ADE,使DEAD

1)試證明:△ACD≌△EBD;

2)用上述方法解答下列問題:如圖2,AD為△ABC的中線,BMIADC,交ACM,若AMGM,求證:BGAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與拋物線的開口大小及開口方向都完全相同,且頂點(diǎn)在直線上,頂點(diǎn)到軸的距離為,則此拋物線的解析式為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于拋物線

對(duì)于拋物線

它與軸交點(diǎn)的坐標(biāo)為________,與軸交點(diǎn)的坐標(biāo)為________,頂點(diǎn)坐標(biāo)為________.

在所給的平面直角坐標(biāo)系中畫出此時(shí)拋物線;

結(jié)合圖象回答問題:當(dāng)時(shí),的取值范圍是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測(cè)量被池塘隔開的A,B兩點(diǎn)之間的距離,根據(jù)實(shí)際情況,作出如圖圖形,其中ABBE,EFBE,AF交BE于D,C在BD上.有四位同學(xué)分別測(cè)量出以下四組數(shù)據(jù):BC,ACB; CD,ACB,ADB;EF,DE,BD;DE,DC,BC.能根據(jù)所測(cè)數(shù)據(jù),求出A,B間距離的有【 】

A.1組 B.2組 C.3組 D.4組

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將長(zhǎng)方形ABCD沿直線BD折疊,使點(diǎn)C落在點(diǎn)C′處,BC′ADE,AD=8,AB=4.求△BED 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10分)已知∠MAN=135°,正方形ABCD繞點(diǎn)A旋轉(zhuǎn).

1)當(dāng)正方形ABCD旋轉(zhuǎn)到∠MAN的外部(頂點(diǎn)A除外)時(shí),AM,AN分別與正方形ABCD的邊CB,CD的延長(zhǎng)線交于點(diǎn)M,N,連接MN

如圖1,若BM=DN,則線段MNBM+DN之間的數(shù)量關(guān)系是 ;

如圖2,若BM≠DN,請(qǐng)判斷中的數(shù)量關(guān)系是否仍成立?若成立,請(qǐng)給予證明;若不成立,請(qǐng)說明理由;

2)如圖3,當(dāng)正方形ABCD旋轉(zhuǎn)到∠MAN的內(nèi)部(頂點(diǎn)A除外)時(shí),AM,AN分別與直線BD交于點(diǎn)M,N,探究:以線段BM,MN,DN的長(zhǎng)度為三邊長(zhǎng)的三角形是何種三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形可看成是分別以、、為位似中心將正方形放大一倍得到的圖形(正方形的邊長(zhǎng)放大到原來的倍),由正方形到正方形,我們稱之作了一次變換,再將正方形作一次變換就得到正方形,…,依此下去,作了次變換后得到正方形,若正方形的面積是,那么正方形的面積是多少(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案