【題目】有一條長度為 a 的線段.
(1)如圖①,以該線段為直徑畫一個圓,該圓的周長 C1 = ;如圖②,分別以該線段的一半為直 徑畫兩個圓,這兩個圓的周長的和 C2 = (都用含 a 的代數(shù)式表示,結(jié)果保留 )
(2)如圖③,在該線段上任取一點,再分別以兩條小線段為直徑畫兩個圓,這兩個圓的周長的和為 C3 ,探索 C1 和 C3 的數(shù)量關(guān)系,并說明理由。
(3)如圖④,當(dāng) a =10 時,以該線段為直徑畫一個大圓,再在大圓內(nèi)畫若干個小圓,這些小圓的直徑都和 大圓的直徑在同一條直線上,且小圓的直徑的和等于大圓的直徑,那么圖中所有圓的周長的和為 (結(jié) 果保留 )
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一些半徑相同的小圓按如圖所示的規(guī)律擺放:第1個圖形有6個小圓,第2個圖形有10個小圓,第3個圖形有16個小圓,第4個圖形有24個小圓,…,依次規(guī)律,第( 。﹤圖形有76個小圓.
A. 8 B. 9 C. 10 D. 11
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,AB=AD,∠C=120°,點E在上.
(1)求∠E的度數(shù);
(2)連接OD、OE,當(dāng)∠DOE=90°時,AE恰好為⊙O的內(nèi)接正n邊形的一邊,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上兩點之間的距離等于相應(yīng)兩數(shù)差的絕對值,即:點A、B表示的數(shù)分別為a、b,這兩點之間的距離為AB=,如:表示數(shù)1與5的兩點之間的距離可表示為,表示數(shù)-2與3的兩點之間的距離可表示為.
(1)數(shù)軸上表示2和7的兩點之間的距離是 ,數(shù)軸上表示3和-6的兩點之間的距離是 ;
(2)數(shù)軸上表示x和-2的兩點M和N之間的距離是 ,如果,則x為 ;
(3)當(dāng)式子:取最小值時,x的值為 ,最小值為 .
(借助數(shù)軸,畫出圖形,寫出過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是小明某一周的收支情況,規(guī)定收入為正,支出為負(fù).(單位:元)
周一 | 周二 | 周三 | 周四 | 周五 | 周六 | 周日 |
15 | 12 | 0 | 20 | 15 | 10 | 14 |
8 | 12 | 19 | 10 | 9 | 11 | 8 |
(1)小明哪天的收入小于支出?答:
(2)小明這一周的平均支出是多少?
(3)小明這一周共有多少節(jié)余?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)為了解居民對居住環(huán)境的滿意度情況(滿意度分為四個等級:、非常滿意:、滿意;、基本滿息;、不滿意),在某小區(qū)隨機抽樣調(diào)查了若干戶居民,并根據(jù)調(diào)查數(shù)據(jù)繪制成下面兩個不完整的統(tǒng)計圖.
請你結(jié)合圖中提供的信息解答下列問題.
(1)這次被調(diào)查的居民共有______戶,并將條形統(tǒng)計圖補充完整.
(2)請計算扇形統(tǒng)計圖中所在扇形的圓心角度數(shù).
(3)若該小區(qū)有2500戶居民,請你估計這個小區(qū)大約有多少戶居民對居住環(huán)境的滿意度是“非常滿意”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A、B的坐標(biāo)分別為(﹣5,0)、(﹣2,0).點P在拋物線y=﹣2x2+4x+8上,設(shè)點P的橫坐標(biāo)為m.當(dāng)0≤m≤3時,△PAB的面積S的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,折線ABC是在某市乘出租車所付車費y(元)與行車?yán)锍?/span>x(km)之間的函數(shù)關(guān)系圖象.
(1)根據(jù)圖象,求當(dāng)x≥3時的函數(shù)關(guān)系式;
(2)某人乘坐2.5km,應(yīng)付多少錢?
(3)某人乘坐13km,應(yīng)付多少錢?
(4)若某人付車費30.8元,出租車行駛了多少路程?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A、B兩點(A在B點左側(cè)),與y軸交于點C,對稱軸為直線x=,OA=2,OD平分∠BOC交拋物線于點D(點D在第一象限);
(1)求拋物線的解析式和點D的坐標(biāo);
(2)點M是拋物線上的動點,在x軸上存在一點N,使得A、D、M、N四個點為頂點的四邊形是平行四邊形,求出點M的坐標(biāo);
(3)在拋物線的對稱軸上,是否存在一點P,使得△BPD的周長最。咳舸嬖,請求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com