直徑為10cm的⊙O中,弦AB=5cm,則弦AB所對的圓周角是 


30°或150°

考點(diǎn):圓周角定理;含30度角的直角三角形;垂徑定理.

專題:分類討論.

分析:連接OA、OB,根據(jù)等邊三角形的性質(zhì),求出∠AOB的度數(shù),再根據(jù)圓周定理求出∠C的度數(shù),再根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠D的度數(shù).

解答:    解:連接OA、OB,

∵AB=OB=OA,

∴∠AOB=60°,

∴∠C=30°,

∴∠D=180°﹣30°=150°.

故答案為:30°或150°.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


小明家今年種植的“紅燈”櫻桃喜獲豐收,采摘上市20天全部銷售完,小明對銷售情況進(jìn)行跟蹤記錄,并將記錄情況繪成圖象,日銷售量y(單位:千克)與上市時間x(單位:天)的函數(shù)關(guān)系如圖1所示,櫻桃價格z(單位:元/千克)與上市時間x(單位:天)的函數(shù)關(guān)系式如圖2所示.

(1)觀察圖象,直接寫出日銷售量的最大值;

(2)求小明家櫻桃的日銷售量y與上市時間x的函數(shù)解析式;

(3)試比較第10天與第12天的銷售金額哪天多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知關(guān)于x的一元二次方程x2﹣6x+1=0兩實(shí)數(shù)根為x1、x2,則x1+x2=  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c與x軸交于A、D兩點(diǎn),與y軸交于點(diǎn)B,四邊形OBCD是矩形,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(0,4),已知點(diǎn)E(m,0)是線段DO上的動點(diǎn),過點(diǎn)E作PE⊥x軸交拋物線于點(diǎn)P,交BC于點(diǎn)G,交BD于點(diǎn)H.

(1)求該拋物線的解析式;

(2)當(dāng)點(diǎn)P在直線BC上方時,請用含m的代數(shù)式表示PG的長度;

(3)在(2)的條件下,是否存在這樣的點(diǎn)P,使得以P、B、G為頂點(diǎn)的三角形與△DEH相似?若存在,求出此時m的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,矩形ABCD中,AB=3,BC=4,動點(diǎn)P從A點(diǎn)出發(fā),按A→B→C的方向在AB和BC上移動,記PA=x,點(diǎn)D到直線PA的距離為y,則y關(guān)于x的函數(shù)圖象大致是(     )

    A.   B.   C.   D.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,⊙O的半徑是2,直線l與⊙O相交于A、B兩點(diǎn),M、N是⊙O上的兩個動點(diǎn),且在直線l的異側(cè),若∠AMB=45°,則四邊形MANB面積的最大值是.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,某農(nóng)場老板準(zhǔn)備建造一個矩形羊圈ABCD,他打算讓矩形羊圈的一面完全靠著墻MN,墻MN可利用的長度為25m,另外三面用長度為50m的籬笆圍成(籬笆正好要全部用完,且不考慮接頭的部分)

(1)若要使矩形羊圈的面積為300m2,則垂直于墻的一邊長AB為多少米?

(2)農(nóng)場老板又想將羊圈ABCD的面積重新建造成面積為320m2,從而可以養(yǎng)更多的羊,請聰明的你告訴他:他的這個想法能實(shí)現(xiàn)嗎?為什么?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,某小區(qū)規(guī)劃在一個長30m、寬20m的長方形ABCD上修建三條同樣寬的通道,使其中兩條與AB平行,另一條與AD平行,其余部分種花草.要使每一塊花草的面積都為78m2,那么通道的寬應(yīng)設(shè)計(jì)成多少m?設(shè)通道的寬為xm,由題意列得方程  

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知一元二次方程x2+2x+2k﹣1=0,當(dāng)k為何值時,此方程有兩個相等的實(shí)數(shù)根?

 

查看答案和解析>>

同步練習(xí)冊答案