【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象回答下列問題.
(1)寫出方程ax2+bx+c=0的根;
(2)寫出不等式ax2+bx+c<0的解集;
(3)若方程ax2+bx+c=k無實(shí)數(shù)根,寫出k的取值范圍.
【答案】
(1)解:由圖象可得:x1=0,x2=2
(2)解:結(jié)合圖象可得:x<0或x>2時(shí),y<0,
即不等式ax2+bx+c<0的解集為x<0或x>2
(3)解:根據(jù)圖象可得,k>2時(shí),方程ax2+bx+c=k沒有實(shí)數(shù)根
【解析】(1)找到拋物線與x軸的交點(diǎn),即可得出方程ax2+bx+c=0的兩個(gè)根;(2)找出拋物線在x軸下方時(shí),x的取值范圍即可;(3)根據(jù)圖象可以看出k取值范圍.
【考點(diǎn)精析】關(guān)于本題考查的二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系和拋物線與坐標(biāo)軸的交點(diǎn),需要了解二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時(shí),拋物線開口向上; a<0時(shí),拋物線開口向下b與對(duì)稱軸有關(guān):對(duì)稱軸為x=-b/2a;c表示拋物線與y軸的交點(diǎn)坐標(biāo):(0,c);一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒有交點(diǎn).才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮在學(xué)習(xí)探索三角形全等時(shí),碰到如下一題:如圖①,若AC=AD,BC=BD,則△ACB與△ADB有怎樣的關(guān)系?
(1)請(qǐng)你幫他們解答,并說明理由;
(2)細(xì)心的小明在解答的過程中,發(fā)現(xiàn)如果在AB上任取一點(diǎn)E,連接CE,DE,則有CE=DE,你知道為什么嗎(如圖②)?
(3)小亮在小明說出理由后,提出如果在AB的延長(zhǎng)線上任取一點(diǎn)P,也有(2)中類似的結(jié)論.請(qǐng)你幫他在圖③中畫出圖形,并寫出結(jié)論,不要求說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形,每個(gè)小正方形的頂點(diǎn)叫格點(diǎn),△ABC的頂點(diǎn)均在格點(diǎn)上.
(1)畫出將△ABC向右平移2個(gè)單位后得到的△A1B1C1 , 再畫出將△A1B1C1繞點(diǎn)B1按逆時(shí)針方向旋轉(zhuǎn)90°后所得到的△A2B1C2;
(2)求線段B1C1旋轉(zhuǎn)到B1C2的過程中,點(diǎn)C1所經(jīng)過的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某個(gè)體戶購(gòu)進(jìn)一批時(shí)令水果,20天銷售完畢,他將本次銷售情況進(jìn)行了跟蹤記錄,根據(jù)所記錄的數(shù)據(jù)繪制如下的函數(shù)圖象,其中日銷售量y(千克)與銷售時(shí)間x(天)之間的函數(shù)關(guān)系如圖(1)所示,銷售單價(jià)p(元/千克)與銷售時(shí)間x(天)之間的函數(shù)關(guān)系如圖(2)所示。(銷售額=銷售單價(jià)×銷售量)
(1)直接寫出y與x之間的函數(shù)解析式;
(2)分別求第10天和第15天的銷售額;
(3)若日銷售量不低于24千克的時(shí)間段為“最佳銷售期”,則此次銷售過程中,“最佳銷售期”共有多少天?在此期間銷售單價(jià)最高為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.
(1)求證:△ABC≌△ADE;
(2)求∠FAE的度數(shù);
(3)求證:CD=2BF+DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售甲、乙兩種商品,現(xiàn)有如下信息: 請(qǐng)結(jié)合以上信息,解答下列問題:
(1)求甲、乙兩種商品的進(jìn)貨單價(jià);
(2)已知甲、乙兩種商品的零售單價(jià)分別為2元、3元,該商店平均每天賣出甲商品500件和乙商品1300件,經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),甲種商品零售單價(jià)每降0.1元,甲種商品每天可多銷售100件,商店決定把甲種商品的零售單價(jià)下降m(m>0)元,在不考慮其他因素的條件下,求當(dāng)m為何值時(shí),商店每天銷售甲、乙兩種商品獲取的總利潤(rùn)為1800元(注:?jiǎn)渭麧?rùn)=零售單價(jià)﹣進(jìn)貨單價(jià))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在矩形ABCD中,AB=a,BC=b,點(diǎn)E是線段AD邊上的任意一點(diǎn)(不含端點(diǎn)A、D),連接BE、CE.
若a=5,sin∠ACB= ,解答下列問題:
(1)填空:b=;
(2)當(dāng)BE⊥AC時(shí),求出此時(shí)AE的長(zhǎng);
(3)設(shè)AE=x,試探索點(diǎn)E在線段AD上運(yùn)動(dòng)過程中,使得△ABE與△BCE相似時(shí),請(qǐng)寫x、a、b三者的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司裝修需用A型板材240塊、B型板材180塊,A型板材規(guī)格是60cm×30cm,B型板材規(guī)格是40cm×30cm.現(xiàn)只能購(gòu)得規(guī)格是150cm×30cm的標(biāo)準(zhǔn)板材.一張標(biāo)準(zhǔn)板材盡可能多地裁出A型、B型板材,共有下列三種裁法:(如圖是裁法一的裁剪示意圖)
裁法一 | 裁法二 | 裁法三 | |
A型板材塊數(shù) | 1 | 2 | 0 |
B型板材塊數(shù) | 2 | M | N |
設(shè)所購(gòu)的標(biāo)準(zhǔn)板材全部裁完,其中按裁法一裁x張、按裁法二裁y張、按裁法三裁z張,且所裁出的A、B兩種型號(hào)的板材剛好夠用.
(1)上表中,m= ,n= ;
(2)分別求出y與x和z與x的函數(shù)關(guān)系式;
(3)若用Q表示所購(gòu)標(biāo)準(zhǔn)板材的張數(shù),求Q與x的函數(shù)關(guān)系式,并指出當(dāng)x取何值時(shí)Q最小,此時(shí)按三種裁法各裁標(biāo)準(zhǔn)板材多少?gòu)垼?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,D在CB上,E為AB之中點(diǎn),AD、CE相交于F,且AD=DB.若∠B=20°,則∠DFE=( )
A. 40° B. 50° C. 60° D. 70°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com