【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.

(1)求證:△ABC≌△ADE;

(2)求∠FAE的度數(shù);

(3)求證:CD=2BF+DE.

【答案】(1)證明見(jiàn)解析;(2)∠FAE=135°;(3)證明見(jiàn)解析.

【解析】

(1)根據(jù)已知條件易證∠BAC=∠DAE,再由AB=AD,AE=AC,根據(jù)SAS即可證得△ABC≌△ADE;(2)已知∠CAE=90°,AC=AE,根據(jù)等腰三角形的性質(zhì)及三角形的內(nèi)角和定理可得∠E=45°,由(1)知△BAC≌△DAE,根據(jù)全等三角形的性質(zhì)可得∠BCA=∠E=45°,再求得∠CAF=45°,∠FAE=∠FAC+∠CAE即可得∠FAE的度數(shù);(3)延長(zhǎng)BFG,使得FG=FB,易證△AFB≌△AFG,根據(jù)全等三角形的性質(zhì)可得AB=AG,∠ABF=∠G,再由△BAC≌△DAE,可得AB=AD,∠CBA=∠EDA,CB=ED,所以AG=AD,∠ABF=∠CDA,即可得∠G=∠CDA,利用AAS證得△CGA≌△CDA,由全等三角形的性質(zhì)可得CG=CD,所以CG=CB+BF+FG=CB+2BF=DE+2BF.

(1)∵∠BAD=∠CAE=90°,

∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,

∴∠BAC=∠DAE,

△BAC△DAE中,

,

∴△BAC≌△DAE(SAS);

(2)∵∠CAE=90°,AC=AE,

∴∠E=45°,

由(1)知△BAC≌△DAE,

∴∠BCA=∠E=45°,

∵AF⊥BC,

∴∠CFA=90°,

∴∠CAF=45°,

∴∠FAE=∠FAC+∠CAE=45°+90°=135°;

(3)延長(zhǎng)BFG,使得FG=FB,

∵AF⊥BG,

∴∠AFG=∠AFB=90°,

△AFB△AFG中,

,

∴△AFB≌△AFG(SAS),

∴AB=AG,∠ABF=∠G,

∵△BAC≌△DAE,

∴AB=AD,∠CBA=∠EDA,CB=ED,

∴AG=AD,∠ABF=∠CDA,

∴∠G=∠CDA,

△CGA△CDA中,

,

∴△CGA≌△CDA,

∴CG=CD,

∵CG=CB+BF+FG=CB+2BF=DE+2BF,

∴CD=2BF+DE.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一只青蛙在圓周上標(biāo)有數(shù)字的五個(gè)點(diǎn)上跳,若它停在奇數(shù)點(diǎn)上,則下一次沿順時(shí)針?lè)较蛱鴥蓚(gè)點(diǎn);若停在偶數(shù)點(diǎn)上,則下一次沿逆時(shí)針?lè)较蛱粋(gè)點(diǎn),若青蛙從4這點(diǎn)開(kāi)始跳,則經(jīng)2015次跳后它停在數(shù)對(duì)應(yīng)的點(diǎn)上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,△ABC和△CDE都是等腰直角三角形,∠C=90°,將△CDE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)一個(gè)角度α(0°<α<90°),使點(diǎn)A,D,E在同一直線上,連接AD,BE.

(1)①依題意補(bǔ)全圖2;
②求證:AD=BE,且AD⊥BE;
③作CM⊥DE,垂足為M,請(qǐng)用等式表示出線段CM,AE,BE之間的數(shù)量關(guān)系;
(2)如圖3,正方形ABCD邊長(zhǎng)為 ,若點(diǎn)P滿足PD=1,且∠BPD=90°,請(qǐng)直接寫(xiě)出點(diǎn)A到BP的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠ACB=60°,半徑為1cm的⊙O切BC于點(diǎn)C,若將⊙O在CB上向右滾動(dòng),則當(dāng)滾動(dòng)到⊙O與CA也相切時(shí),圓心O移動(dòng)的水平距離是cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】取一副三角板按如圖所示拼接,固定三角板ADC,將三角板ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角度為α(0°<α≤45°),得到△ABC′.

①當(dāng)α為多少度時(shí),ABDC?

②當(dāng)旋轉(zhuǎn)到圖③所示位置時(shí),α為多少度?

③連接BD,當(dāng)0°<α≤45°時(shí),探求∠DBC′+CAC′+BDC值的大小變化情況,并給出你的證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象回答下列問(wèn)題.
(1)寫(xiě)出方程ax2+bx+c=0的根;
(2)寫(xiě)出不等式ax2+bx+c<0的解集;
(3)若方程ax2+bx+c=k無(wú)實(shí)數(shù)根,寫(xiě)出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一副直角三角板如圖放置,點(diǎn)A在ED上,∠F=∠ACB=90°,∠E=30°,∠B=45°,AC=12,試求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+c上,部分點(diǎn)的橫、縱坐標(biāo)x、y的對(duì)應(yīng)值如下表:

x

﹣2

﹣1

0

1

2

y

0

﹣4

﹣4

0

8


(1)根據(jù)上表填空; ①方程ax2+bx+c=0的兩個(gè)根分別是
②拋物線經(jīng)過(guò)點(diǎn)(﹣3,);
③在對(duì)稱軸左側(cè),y隨x增大而;
(2)求拋物線y=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,有以下結(jié)論:①abc>0,②3a+c<0,③a﹣b+c>0,④4a+2b+c>0,⑤若點(diǎn)(﹣2,y1)和(﹣ ,y2)在該圖象上,則y1>y2 , 其中正確的結(jié)論是 . (填入正確結(jié)論的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案