【題目】某商店銷售甲、乙兩種商品,現(xiàn)有如下信息: 請結合以上信息,解答下列問題:
(1)求甲、乙兩種商品的進貨單價;
(2)已知甲、乙兩種商品的零售單價分別為2元、3元,該商店平均每天賣出甲商品500件和乙商品1300件,經(jīng)市場調查發(fā)現(xiàn),甲種商品零售單價每降0.1元,甲種商品每天可多銷售100件,商店決定把甲種商品的零售單價下降m(m>0)元,在不考慮其他因素的條件下,求當m為何值時,商店每天銷售甲、乙兩種商品獲取的總利潤為1800元(注:單件利潤=零售單價﹣進貨單價)
【答案】
(1)解:設甲商品進貨單價x元,乙商品進貨單價y元.
依題意,得
解得: .
答:甲商品進貨單價為1元,乙商品進貨單價為2元
(2)解:依題意,得
(2﹣m﹣1)(500+1000m)+(3﹣2)×1300=1800
(1﹣m)(500+1000m)=500
即2m2﹣m=0
∴m1=0.5,m2=0
∵m>0
∴m=0不合舍去,即m=0.5
答:當m=0.5時,商店獲取的總利潤為1800元
【解析】(1)根據(jù)圖上信息可以得出甲乙商品之間價格之間的等量關系,即可得出方程組求出即可;(2)根據(jù)降價后甲每天賣出:(500+ ×100)件,每件降價后每件利潤為:(1﹣m)元;即可得出總利潤,利用一元二次方程解法求出即可.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象C經(jīng)過(﹣5,0),(0, ),(1,6)三點,直線l的解析式為y=2x﹣3.
(1)求拋物線C的解析式;
(2)判斷拋物線C與直線l有無交點;
(3)若與直線l平行的直線y=2x+m與拋物線C只有一個公共點P,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對非負實數(shù)x“四舍五入”到個位的值記為<x>,即:當n為非負整數(shù)時,如果n﹣ ≤x<n+ ,則<x>=n. 如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…
試解決下列問題:
(1)填空:①<π>=________;②如果<2x﹣1>=3,則實數(shù)x的取值范圍為________;
(2)①當x≥0,m為非負整數(shù)時,求證:<x+m>=m+<x>;②舉例說明<x+y>=<x>+<y>不恒成立;
(3)求滿足<x>= x的所有非負實數(shù)x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖△ABC中,∠BAC=78°,AB=AC,P為△ABC內一點,連BP,CP,使∠PBC=9°,∠PCB=30°,連PA,則∠BAP的度數(shù)為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象回答下列問題.
(1)寫出方程ax2+bx+c=0的根;
(2)寫出不等式ax2+bx+c<0的解集;
(3)若方程ax2+bx+c=k無實數(shù)根,寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在6×8的網(wǎng)格圖中,每個小正方形邊長均為1,原點O和△ABC的頂點均為格點.
(1)以O為位似中心,在網(wǎng)格圖中作△A′B′C′,使△A′B′C′與△ABC位似,且位似比為1:2;(保留作圖痕跡,不要求寫作法和證明)
(2)若點C和坐標為(2,4),則點A′的坐標為( , ),點C′的坐標為( , ),S△A′B′C′:S△ABC= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為1的正五邊形ABCDE,頂點A、B在半徑為1的圓上,其它各點在圓內,將正五邊形ABCDE繞點A逆時針旋轉,當點E第一次落在圓上時,則點C轉過的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市自來水公司為鼓勵居民節(jié)約用水,采取按月用水量分段收費辦法,若某戶居民應交交費(元)與用水量(噸)的函數(shù)關系如圖所示。
(1)分別寫出當和時,與的函數(shù)關系式;
(2)若某用戶該月用水21噸,則應交水費多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在平面直角坐標系xOy中,O是坐標原點,直線l:y=x,點A1坐標為(4,0),過點A1作x軸的垂線交直線l于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸正半軸于點A2,再過點A2作x軸的垂線交直線l于點B2,以原點O為圓心,OB2為半徑畫弧交x軸正半軸于點A3……按此做法進行下去,點A2 017的橫坐標為_____________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com