【題目】為了加快“智慧校園”建設(shè),某市準(zhǔn)備為試點學(xué)校采購一批、兩種型號的一體機,經(jīng)過市場調(diào)查發(fā)現(xiàn),今年每套型一體機的價格比每套型一體機的價格多0.6萬元,且用960萬元恰好能購買500套型一體機和200套型一體機.
(1)求今年每套型、型一體機的價格各是多少萬元
(2)該市明年計劃采購型、型一體機1100套,考慮物價因素,預(yù)計明年每套型一體機的價格比今年上漲25%,每套型一體機的價格不變,若購買型一體機的總費用不低于購買型一體機的總費用,那么該市明年至少需要投入多少萬元才能完成采購計劃?
【答案】(1)今年每套型的價格各是1.2萬元、型一體機的價格是1.8萬元;(2)該市明年至少需投入1800萬元才能完成采購計劃.
【解析】
(1)直接利用今年每套型一體機的價格比每套型一體機的價格多0.6萬元,且用960萬元恰好能購買500套型一體機和200套型一體機,分別得出方程求出答案;
(2)根據(jù)題意表示出總費用進而利用一次函數(shù)增減性得出答案.
(1)設(shè)今年每套型一體機的價格為萬元,每套型一體機的價格為萬元,
由題意可得:,
解得:,
答:今年每套型的價格各是1.2萬元、型一體機的價格是1.8萬元;
(2)設(shè)該市明年購買型一體機套,則購買型一體機套,
由題意可得:,
解得:,
設(shè)明年需投入萬元,
,
∵,
∴隨的增大而減小,
∵,
∴當(dāng)時,有最小值,
故該市明年至少需投入1800萬元才能完成采購計劃.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小剛一起做游戲,游戲規(guī)則如下:將分別標(biāo)有數(shù)字 1, 2, 3, 4 的 4 個小球放入一個不透明的袋子中,這些球除數(shù)字外都相同.從中隨機摸出一個球記下數(shù)字后放回,再從中隨機摸出一個球記下數(shù)字.若兩次數(shù)字差的絕對值小于 2,則小明獲勝,否則小剛獲勝.這個游戲?qū)扇斯絾幔空堈f明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售型和型兩種學(xué)習(xí)機,其中用10000元采購型學(xué)習(xí)機臺數(shù)和用8000元采購型學(xué)習(xí)機臺數(shù)相等,且一臺型學(xué)習(xí)機比一臺型學(xué)習(xí)機進價多100元.
(1)求一臺型和型學(xué)習(xí)機價格各是多少元?
(2)若購進型學(xué)習(xí)機共100臺,其中型的進貨量不超過型的2倍,設(shè)購進型學(xué)習(xí)機臺.
①求的取值范圍.
②已知型學(xué)習(xí)機售價均是900元/臺,實際進貨時,廠家對型學(xué)習(xí)機在原進貨價的基礎(chǔ),上下調(diào)元,且限定商店最多購進型學(xué)習(xí)機60臺,若商店保持同種學(xué)習(xí)機的售價不變,請你根據(jù)以上信息,求出使這100臺學(xué)習(xí)機銷售總利潤(元)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AB⊥AC,DC⊥AC,∠B=∠D,,,,點E,F分別是BC,AD的中點.
(1)求證:;
(2)當(dāng)與滿足什么數(shù)量關(guān)系時,四邊形是正方形?請證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市一段時期內(nèi)對某種商品經(jīng)銷情況進行統(tǒng)計得到該商品的銷售數(shù)量(件)由基礎(chǔ)銷售量與浮動銷售量兩個部分組成,其中基本銷售量保持不變,浮動銷售量與售價(元/件,)成反比例,銷售過程中得到的部分?jǐn)?shù)據(jù)如下:
售價 | 8 | 10 |
銷售數(shù)量 | 70 | 58 |
(1)求與之間的函數(shù)關(guān)系式;
(2)當(dāng)該商品銷售數(shù)量為50件時,求每件商品的售價;
(3)設(shè)銷售總額為,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小聰用一張面積為1的正方形紙片,按如下方式操作:
①將正方形紙片四角向內(nèi)折疊,使四個頂點重合,展開后沿折痕剪開,把四個等腰直角三角形扔掉;
②在余下紙片上依次重復(fù)以上操作,
當(dāng)完成第2020次操作時,余下紙片的面積為( )
A.22019B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABC中,∠A=90°,AB=3,AC=4,點M、Q分別是邊AB、BC上的動點(點M不與A、B重合),且MQ⊥BC,過點M作MN∥BC.交AC于點N,連接NQ,設(shè)BQ=x.
(1)是否存在一點Q,使得四邊形BMNQ為平行四邊形,并說明理由;
(2)當(dāng)BM=2時,求x的值;
(3)當(dāng)x為何值時,四邊形BMNQ的面積最大,并求出最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,點的坐標(biāo)為,拋物線經(jīng)過兩點.
(1)求拋物線的解析式;
(2)點是直線上方拋物線上的一點,過點作軸于點,交線段于點,使.
①求點的坐標(biāo)和的面積;
②在直線上是否存在點,使為直角三角形?若存在,直接寫出符合條件的所有點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,取的中點,連接,點關(guān)于線段的對稱點為點,點為線段上的一個動點,連接、、、,已知,,,,當(dāng)的值最小時,則的值為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com