【題目】如圖,點(diǎn)P是AOB內(nèi)任意一點(diǎn),OP=10cm,點(diǎn)P與點(diǎn)關(guān)于射線OA對(duì)稱,點(diǎn)P與點(diǎn)關(guān)于射線OB對(duì)稱,連接交OA于點(diǎn)C,交OB于點(diǎn)D,當(dāng)△PCD的周長(zhǎng)是10cm時(shí),∠AOB的度數(shù)是______度。
【答案】30°
【解析】
連接OP1,OP2,據(jù)軸對(duì)稱的性質(zhì)得出∠P1OA=∠AOP=∠P1OP,∠P2OB=∠POB=POP2,PC=CP1,OP=OP1=10cm,DP2=PD,OP=OP2=10cm,求出△P1OP2是等邊三角形,即可得出答案.
解:如圖:連接OP1,OP2,
∵點(diǎn)P關(guān)于射線OA對(duì)稱點(diǎn)為點(diǎn)P1
∴OA為PP1的垂直平分線
∴∠P1OA=∠AOP=∠P1OP,
∴PC=CP1,OP=OP1=10cm,
同理可得:∠P2OB=∠POB=∠POP2,DP2=PD,OP=OP2=10cm,
∴△PCD的周長(zhǎng)是=CD+PC+PD=CD+CP1+DP2=P1 P2=10cm
∴△P1OP2是等邊三角形,
∴∠P1OP2=60°,
∴∠AOB=30°,
故答案為:30°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某游泳館每年夏季推出兩種游泳付費(fèi)方式,方式一:先購(gòu)買會(huì)員證,每張會(huì)員證100元,只限本人當(dāng)年使用,憑證游泳每次再付費(fèi)5元;方式二:不購(gòu)買會(huì)員證,每次游泳付費(fèi)9元.
設(shè)小明計(jì)劃今年夏季游泳次數(shù)為x(x為正整數(shù)).
(I)根據(jù)題意,填寫下表:
游泳次數(shù) | 10 | 15 | 20 | … | x |
方式一的總費(fèi)用(元) | 150 | 175 | ______ | … | ______ |
方式二的總費(fèi)用(元) | 90 | 135 | ______ | … | ______ |
(Ⅱ)若小明計(jì)劃今年夏季游泳的總費(fèi)用為270元,選擇哪種付費(fèi)方式,他游泳的次數(shù)比較多?
(Ⅲ)當(dāng)x>20時(shí),小明選擇哪種付費(fèi)方式更合算?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【題目】如圖①,一次函數(shù) y= x - 2 的圖像交 x 軸于點(diǎn) A,交 y 軸于點(diǎn) B,二次函數(shù) y= x2 bx c的圖像經(jīng)過 A、B 兩點(diǎn),與 x 軸交于另一點(diǎn) C.
(1)求二次函數(shù)的關(guān)系式及點(diǎn) C 的坐標(biāo);
(2)如圖②,若點(diǎn) P 是直線 AB 上方的拋物線上一點(diǎn),過點(diǎn) P 作 PD∥x 軸交 AB 于點(diǎn) D,PE∥y 軸交 AB 于點(diǎn) E,求 PD+PE 的最大值;
(3)如圖③,若點(diǎn) M 在拋物線的對(duì)稱軸上,且∠AMB=∠ACB,求出所有滿足條件的點(diǎn) M的坐標(biāo).
① ② ③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣舉辦老、中、青三個(gè)年齡段五公里競(jìng)走活動(dòng),其人數(shù)比為,如圖所示的扇形統(tǒng)計(jì)圖表示 上述分布情況,已知老人有人,則下列說法不正確的是( )
A. 老年所占區(qū)域的圓心角是B. 參加活動(dòng)的總?cè)藬?shù)是人
C. 中年人比老年人多D. 老年人比青年人少人
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是根據(jù)九年級(jí)某班50名同學(xué)一周的鍛煉情況繪制的條形統(tǒng)計(jì)圖,下面關(guān)于該班50名同學(xué)一周鍛煉時(shí)間的說法錯(cuò)誤的是( 。
A.平均數(shù)是6
B.中位數(shù)是6.5
C.眾數(shù)是7
D.平均每周鍛煉超過6小時(shí)的人數(shù)占該班人數(shù)的一半
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖示,若△ABC內(nèi)一點(diǎn)P滿足∠PAC=∠PBA=∠PCB,則點(diǎn)P為△ABC的布洛卡點(diǎn).三角形的布洛卡點(diǎn)(Brocard point)是法國(guó)數(shù)學(xué)家和數(shù)學(xué)教育家克洛爾(A.L.Crelle 1780﹣1855)于1816年首次發(fā)現(xiàn),但他的發(fā)現(xiàn)并未被當(dāng)時(shí)的人們所注意,1875年,布洛卡點(diǎn)被一個(gè)數(shù)學(xué)愛好者法國(guó)軍官布洛卡(Brocard 1845﹣1922)重新發(fā)現(xiàn),并用他的名字命名.問題:已知在等腰直角三角形DEF中,∠EDF=90°,若點(diǎn)Q為△DEF的布洛卡點(diǎn),DQ=1,則EQ+FQ=( )
A.5 B.4 C.3+ D.2+
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形方格紙中,我們把頂點(diǎn)都在“格點(diǎn)”上的三角形稱為“格點(diǎn)三角形“,如圖,△ABC是一個(gè)格點(diǎn)三角形,點(diǎn)A的坐標(biāo)為(﹣1,2).
(1)點(diǎn)B的坐標(biāo)為 ,△ABC的面積為 ;
(2)在所給的方格紙中,請(qǐng)你以原點(diǎn)O為位似中心,將△ABC放大為原來的2倍,放大后點(diǎn)A、B的對(duì)應(yīng)點(diǎn)分別為A1、B1,點(diǎn)B1在第一象限;
(3)在(2)中,若P(a,b)為線段AC上的任一點(diǎn),則放大后點(diǎn)P的對(duì)應(yīng)點(diǎn)P1的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明大學(xué)畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆售后統(tǒng)計(jì),盆景的平均每盆利潤(rùn)是160元,花卉的平均每盆利潤(rùn)是19元,調(diào)研發(fā)現(xiàn):
①盆景每增加1盆,盆景的平均每盆利潤(rùn)減少2元;每減少1盆,盆景的平均每盆利潤(rùn)增加2元;②花卉的平均每盆利潤(rùn)始終不變.
小明計(jì)劃第二期培植盆景與花卉共100盆,設(shè)培植的盆景比第一期增加x盆,第二期盆景與花卉售完后的利潤(rùn)分別為W1,W2(單位:元)
(1)用含x的代數(shù)式分別表示W1,W2;
(2)當(dāng)x取何值時(shí),第二期培植的盆景與花卉售完后獲得的總利潤(rùn)W最大,最大總利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在以點(diǎn)O為原點(diǎn)的平面直角坐標(biāo)系中,邊長(zhǎng)為1的正方形OABC的兩頂點(diǎn)A,C分別在y軸,軸的正半軸上,現(xiàn)將正方形OABC繞點(diǎn)О順時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)A第一次落在直線上時(shí),停止轉(zhuǎn)動(dòng),旋轉(zhuǎn)過程中,AB邊交直線于點(diǎn)M,BC邊交軸于點(diǎn)N.
(1)旋轉(zhuǎn)停止時(shí)正方形旋轉(zhuǎn)的度數(shù)是_________.
(2)在旋轉(zhuǎn)過程中,當(dāng)MN和AC平行時(shí),
①與是否全等?此時(shí)正方形OABC旋轉(zhuǎn)的度數(shù)是多少?
②直接寫出的周長(zhǎng)的值,并判斷這個(gè)值在正方形OABC的旋轉(zhuǎn)過程中是否發(fā)生變化.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com