【題目】如圖,平行四邊形中,平分邊于,邊于,若,,則平行四邊形的面積為________

【答案】21

【解析】

注意到AE既是角平分線又是EF的垂線,于是根據(jù)三線合一構(gòu)造出等腰三角形,即雙向延長EF分別交AB、ADM、N,則AM=AN.又由ADBC可推出BA=BE,由BC=7,DF=3,EC=CF可求出CE=CF=2,結(jié)合tanAEB=3,算出AE、ME的長度,從而求出AMN的面積,接著利用相似三角形的面積之比等于相似比的平方這一性質(zhì)可分別算出BME、CEF、DFN的面積,再用割補(bǔ)法算出平行四邊形ABCD的面積.

如圖,延長EFADN,延長FEAB于點(diǎn)M,

∵∠BAE=EAD,

∴∠BAE=AEB,

AB=BE,

設(shè)CF=x,

CF=EC,DF=3,

EC=x,CD=AB=BE=3+x

BC=BE+CE=7,

x=2,AB=BE=CD=5,

顯然BEMCEFDNF

BM=BE=5,DN=DF=3,

AM=AN=10,

AEEF,

故答案為:21.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知平面直角坐標(biāo)系上的三個(gè)點(diǎn)、,將按順時(shí)針方向旋轉(zhuǎn),則點(diǎn)的對應(yīng)點(diǎn)的坐標(biāo)分別是________,________,________,________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yx22x3

(1)求圖象的開口方向、對稱軸、頂點(diǎn)坐標(biāo);

(2)求圖象與x軸的交點(diǎn)坐標(biāo),與y軸的交點(diǎn)坐標(biāo);

(3)當(dāng)x為何值時(shí),yx的增大而增大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在ABC中,∠A90°,ABAC,點(diǎn)DBC的中點(diǎn).

1)如圖①,若點(diǎn)E、F分別為ABAC上的點(diǎn),且DEDF

①求證:BEAF

②若SBDESABC2,求SCDF;

2)若點(diǎn)EF分別為AB、CA延長線上的點(diǎn),且DEDF

BEAF還成立嗎?請利用圖②說明理由;

②若SBDESABC8,直接寫出DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組為測量一棵古樹BH和教學(xué)樓CG的高,先在A處用高1.5米的測角儀測得古樹頂端H的仰角∠HDE45°,此時(shí)教學(xué)樓頂端G恰好在視線DH上,再向前走7米到達(dá)B處,又測得教學(xué)樓頂端G的仰角∠GEF60°,點(diǎn)A、B、C三點(diǎn)在同一水平線上.

(1)計(jì)算古樹BH的高;

(2)計(jì)算教學(xué)樓CG的高.(參考數(shù)據(jù):≈1.4,≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列各題

(1)

(2)(—3)2+(—3)×(+3)

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A1A2,A3分別在x軸上,點(diǎn)B1,B2B3,分別在直線yx上,OA1B1,B1A1A2,B1B2A2,B2A2A3,B2B3A3,都是等腰直角三角形,如果OA11,則點(diǎn)A2019的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與探究

如圖1所示,直線y=x+cx軸交于點(diǎn)A(﹣4,0),與y軸交于點(diǎn)C,拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A,C.

(1)求拋物線的解析式

(2)點(diǎn)E在拋物線的對稱軸上,求CE+OE的最小值;

(3)如圖2所示,M是線段OA的上一個(gè)動(dòng)點(diǎn),過點(diǎn)M垂直于x軸的直線與直線AC和拋物線分別交于點(diǎn)P、N

若以C,P,N為頂點(diǎn)的三角形與△APM相似,則△CPN的面積為   

若點(diǎn)P恰好是線段MN的中點(diǎn),點(diǎn)F是直線AC上一個(gè)動(dòng)點(diǎn),在坐標(biāo)平面內(nèi)是否存在點(diǎn)D,使以點(diǎn)D,F(xiàn),P,M為頂點(diǎn)的四邊形是菱形?若存在,請直接寫出點(diǎn)D的坐標(biāo);若不存在,請說明理由.

注:二次函數(shù)y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(﹣,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,BE是△ABC的外接圓O的直徑,CD是△ABC的高.

1)求證:AC·BCBE·CD;

2)已知CD6AD3、BD8,求⊙O的直徑BE的長.

查看答案和解析>>

同步練習(xí)冊答案