【題目】對任意一個三位數(shù),如果滿足各個數(shù)位上的數(shù)字互不相同,且都不為零,那么稱這個數(shù)為“相異數(shù)”,將一個“相異數(shù)”的各個數(shù)位上的數(shù)字之和記為. 例如時,.

(1)對于“相異數(shù)”,若,請你寫出一個的值;

(2)都是“相異數(shù)”,其中,(,都是正整數(shù)),規(guī)定:,當時,求的最小值.

【答案】(1)見解析;(2).

【解析】

1)由定義可得;

2)根據(jù)題意先求出Fa=x+3Fb=8+y,代入可得二元一次方程x+y=7,求出x,y的解代入可得k的值.

(1),請你寫出一個的值為123(132,或213,或231,或312,或321).

(2)都是相異數(shù),

.

.

.

,都是正整數(shù),

相異數(shù),∴.

相異數(shù),∴.

.

的最小值是.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OFMON的平分線,點A在射線OM上,PQ是直線ON上的兩動點,點Q在點P的右側,且PQ=OA,作線段OQ的垂直平分線,分別交直線OF、ON交于點B、點C,連接AB、PB

1)如圖1,當P、Q兩點都在射線ON上時,請直接寫出線段ABPB的數(shù)量關系;

2)如圖2,當PQ兩點都在射線ON的反向延長線上時,線段AB,PB是否還存在(1)中的數(shù)量關系?若存在,請寫出證明過程;若不存在,請說明理由;

3)如圖3,MON=60°,連接AP,設=k,當PQ兩點都在射線ON上移動時,k是否存在最小值?若存在,請直接寫出k的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三角形紙片ABC,AB=AC,∠BAC=90°,點EAB中點.沿過點E的直線折疊,使點B與點A重合,折痕現(xiàn)交于點F.已知EF=cm BC的長是_______________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,ABCD,∠B=90°AB=AD,∠BAD的平分線交BCE,連接DE

1)說明點DABE的外接圓上;

2)若∠AED=CED,試判斷直線CDABE外接圓的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y= ax+bxc,自變量x 與函數(shù)y 的對應值如表:

x

...

5

4

3

2

1

0

...

y

...

4

0

2

2

0

4

...

下列說法正確的是(

A. 拋物線的開口向下 B. x>-3時,yx的增大而增大

C. 二次函數(shù)的最小值是-2 D. 拋物線的對稱軸是x=-5/2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校舉辦了一次趣味數(shù)學競賽,滿分100分,學生得分均為整數(shù),達到成績60分及以上為合格,達到90分及以上為優(yōu)秀,這次競賽中,甲乙兩組學生成績?nèi)缦拢捉M:30,60,60,60,60,60,70,90,90,100 ;乙組:50,60,60,60,70,70,70,70,80,90.

1)以上成績統(tǒng)計分析表中a=______分,b=______分,c=_______分;

組別

平均數(shù)

中位數(shù)

方差

合格率

優(yōu)秀率

甲組

68

a

376

30%

乙組

b

c

90%

2)小亮同學說:這次競賽我得了70分,在我們小組中屬于中游略偏上,觀察上面表格判斷,小亮可能是甲乙哪個組的學生?并說明理由

3)計算乙組的方差和優(yōu)秀率,如果你是該校數(shù)學競賽的教練員,現(xiàn)在需要你選一組同學代表學校參加復賽,你會選擇哪一組?并說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將長方形紙片的一角作折疊,使頂點 A 落在 A, DE 為折痕,將 BEA對折,使得 B落在直線 EA上,得折痕 EG .

(1) DEG 的度數(shù);

(2) EA恰好平分 DEB ,求 DEA的度數(shù) .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,反比例函數(shù)y= 的圖象與一次函數(shù)y=x+b的圖象交

于點A(1,4)、點B(-4,n).

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAB的面積;

(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一副三角板按如圖放置,小明得到下列結論:①如果∠230°,則有ACDE;②∠BAE+∠CAD180°;③如果BCAD,則有∠230°;④如果∠CAD150°,則∠4=∠C;那么其中正確的結論有________

查看答案和解析>>

同步練習冊答案