【題目】甲、乙兩輛汽車從 A 地出發(fā)前往相距 250 千米的 B 地,乙車先出發(fā)勻速行駛,一段時(shí)間后,甲車出發(fā) 勻速追趕,途中因油料不足,甲到服務(wù)區(qū)加油花了 6 分鐘,為了盡快追上乙車,甲車提高速度仍保持 勻速行駛,追上乙車后繼續(xù)保持這一速度直到 B 地,如圖是甲、乙兩車之間的距離 skm2),乙車出發(fā)時(shí)間 th)之間的函數(shù)關(guān)系圖象,則甲車比乙車早到_____分鐘.

【答案】11.5

【解析】

根據(jù)函數(shù)圖象中的數(shù)據(jù)可以分別求得甲開始的速度和后來的速度和乙的速度,從而可以求得甲車比乙車早到的時(shí)間,從而可以解答本題.

由題意可得,

乙車的速度為:40÷0.5=80km/h,

甲車開始時(shí)的速度為:(2×80-10÷2-0.5=100km/h,

甲車后來的速度為:=120km/h

∴乙車從A地到B地用的時(shí)間為:250÷80=h,

甲車從A地到B地的時(shí)間為:h,

11.5分鐘,

故答案為:11.5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長(zhǎng)為8的正方形中,、分別是邊上的動(dòng)點(diǎn),且中點(diǎn),是邊上的一個(gè)動(dòng)點(diǎn),則的最小值是(

A.10B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖中是拋物線拱橋,P處有一照明燈,水面OA4m,從O、A兩處觀測(cè)P處,仰角分別為αβ,且tanαtanβ,以O為原點(diǎn),OA所在直線為x軸建立直角坐標(biāo)系.

(1)求點(diǎn)P的坐標(biāo);

(2)水面上升1m,水面寬多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,已知,,,點(diǎn)的延長(zhǎng)線上,點(diǎn)的延長(zhǎng)線上,有下列結(jié)論:①;②;③;④若,則點(diǎn)的距離為.則其中正確結(jié)論的個(gè)數(shù)是( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】位于南岸區(qū)黃桷埡的文峰塔,有著平安寶塔之稱.某校數(shù)學(xué)社團(tuán)對(duì)其高度 AB進(jìn)行了測(cè)量.如圖,他們從塔底A的點(diǎn)B出發(fā),沿水平方向行走了13米,到達(dá)點(diǎn)C,然后沿斜坡CD繼續(xù)前進(jìn)到達(dá)點(diǎn)D處,已知DC=BC.在點(diǎn)D處用測(cè)角儀測(cè)得塔頂A的仰角為42°(點(diǎn)A,B,C,D,E在同一平面內(nèi)).其中測(cè)角儀及其支架DE高度約為0.5米,斜坡CD的坡度(或坡比)i=1:2.4,那么文峰塔的高度AB約為( )(sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)

A. 22.5 B. 24.0 C. 28.0 D. 33.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小東同學(xué)根據(jù)函數(shù)的學(xué)習(xí)經(jīng)驗(yàn),對(duì)函數(shù)y 進(jìn)行了探究,下面是他的探究過程:

1)已知x=-3時(shí) 0;x1 時(shí) 0,化簡(jiǎn):

①當(dāng)x<-3時(shí),y

②當(dāng)-3≤x≤1時(shí),y

③當(dāng)x1時(shí),y

2)在平面直角坐標(biāo)系中畫出y 的圖像,根據(jù)圖像,寫出該函數(shù)的一條性質(zhì).

3)根據(jù)上面的探究解決,下面問題:

已知A(a,0)x軸上一動(dòng)點(diǎn),B(1,0),C(3,0),則ABAC的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于的一元二次方程.

1)求證:方程總有兩個(gè)實(shí)數(shù)根;

2)若方程有一根小于1,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“測(cè)量物體的高度” 活動(dòng)中,某數(shù)學(xué)興趣小組的3名同學(xué)選擇了測(cè)量學(xué)校里的棵樹的高度.在同一時(shí)刻的陽(yáng)光下,他們分別做了以下工作:

小芳:測(cè)得一根長(zhǎng)為1米的竹竿的影長(zhǎng)為0.8米,甲樹的影長(zhǎng)為4米如圖1

小華:發(fā)現(xiàn)乙樹的影子不全落在地面上,有一部分影子落在教學(xué)樓的墻壁上如圖2),墻壁上的影長(zhǎng)為1.2米,落在地面上的影長(zhǎng)為2.4米

小麗:測(cè)量的丙樹的影子除落在地面上外還有一部分落在教學(xué)樓的第一級(jí)臺(tái)階上如圖3),測(cè)得此影子長(zhǎng)為0.3米,一級(jí)臺(tái)階高為0.3米落在地面上的影長(zhǎng)為4.5米

1在橫線上直接填寫甲樹的高度為 米.

2求出乙樹的高度.

3請(qǐng)選擇丙樹的高度為( )

A、6.5米 B、5. 5米 C、6.3米 D、4.9米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題提出:

如圖①菱形ABCD,AB=4,ABC=60°點(diǎn)0是菱形ABCD兩條對(duì)角線的交點(diǎn),EF是經(jīng)過點(diǎn)O的任意一條線段,容易知道線段EF將菱形ABCD的面積等分,那么線段EF的長(zhǎng)度的最大值是 ,最小值是 。

問題探究:

如圖② 四邊形ABCD,ADBC,AD=2BC=4,∠B=C=60°,請(qǐng)你過點(diǎn)D畫出將四邊形ABCD面積平分的線段DE,并求出DE的長(zhǎng)。

問題解決:

如圖③.四邊形ABCD是西安城區(qū)改造過程中一塊不規(guī)則空地,為了美化環(huán)境,市規(guī)劃辦決定在這塊地里種兩種花棄,打算過點(diǎn)C修一條筆直的通道,以方便市民出行和觀賞花卉,并要求通道兩側(cè)種植的花卉面積相等,經(jīng)測(cè)量AB=20米,AD=100米,∠A=60°,∠ABC=150°,∠BCD=120°,若將通道記為CF,請(qǐng)你畫出通道CF,并求出通道CF的長(zhǎng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案