【題目】將矩形ABCD折疊使A,C重合,折痕交BC于E,交AD于F,
(1)求證:四邊形AECF為菱形;
(2)若AB=4,BC=8,求菱形的邊長;
(3)在(2)的條件下折痕EF的長.
【答案】(1)見試題解析(2)5(3)2.
【解析】
試題(1)根據(jù)折疊的性質(zhì)得OA=OC,EF⊥AC,EA=EC,再利用AD∥AC得到∠FAC=∠ECA,則可根據(jù)“ASA”判斷△AOF≌△COE,得到OF=OE,加上OA=OC,AC⊥EF,于是可根據(jù)菱形的判定方法得到四邊形AECF為菱形;
(2)設(shè)菱形的邊長為x,則BE=BC﹣CE=8﹣x,AE=x,在Rt△ABE中根據(jù)勾股定理得(8﹣x)2+42=x2,然后解方程即可得到菱形的邊長;
(3)先在Rt△ABC中,利用勾股定理計(jì)算出AC=4,則OA=AC=2,然后在Rt△AOE中,利用勾股定理計(jì)算出OE=,所以EF=2OE=2.
試題解析:(1)證明:∵矩形ABCD折疊使A,C重合,折痕為EF,∴OA=OC,EF⊥AC,EA=EC,
∵AD∥AC,∴∠FAC=∠ECA,在△AOF和△COE中,,∴△AOF≌△COE,
∴OF=OE,∵OA=OC,AC⊥EF,
∴四邊形AECF為菱形;
(2)解:設(shè)菱形的邊長為x,則BE=BC﹣CE=8﹣x,AE=x,
在Rt△ABE中,∵BE2+AB2=AE2,
∴(8﹣x)2+42=x2,解得x=5,
即菱形的邊長為5;
(3)解:在Rt△ABC中,AC===4,
∴OA=AC=2,
在Rt△AOE中,OE===,
∴EF=2OE=2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB,以O為圓心,以任意長為半徑作弧,分別交OA,OB于F,E兩點(diǎn),再分別以E,F為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點(diǎn)P,作射線OP,過點(diǎn)F作FD∥OB交OP于點(diǎn)D.
(1)若∠OFD=116°,求∠DOB的度數(shù);
(2)若FM⊥OD,垂足為M,求證:△FMO≌△FMD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點(diǎn)D,E,過點(diǎn)D作DF⊥AC于點(diǎn)F.
(1)判斷DF與是⊙O的位置關(guān)系,并證明你的結(jié)論。
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一塊長和寬分別為60厘米和40厘米的長方形鐵皮,要在它的四角截去四個相等的小正方形,折成一個無蓋的長方體水槽,使它的底面積為800平方厘米.求截去正方形的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)活動 實(shí)驗(yàn)、猜想與證明
問題情境
(1)數(shù)學(xué)活動課上,小穎向同學(xué)們提出了這樣一個問題:如圖(1),在矩形ABCD中,AB=2BC,M、N分別是AB,CD的中點(diǎn),作射線MN,連接MD,MC,請直接寫出線段MD與MC之間的數(shù)量關(guān)系.
解決問題
(2)小彬受此問題啟發(fā),將矩形ABCD變?yōu)槠叫兴倪呅,其中?/span>A為銳角,如圖(2),AB=2BC,M,N分別是AB,CD的中點(diǎn),過點(diǎn)C作CE⊥AD交射線AD于點(diǎn)E,交射線MN于點(diǎn)F,連接ME,MC,則ME=MC,請你證明小彬的結(jié)論;
(3)小麗在小彬結(jié)論的基礎(chǔ)上提出了一個新問題:∠BME與∠AEM有怎樣的數(shù)量關(guān)系?請你回答小麗提出的這個問題,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小明在數(shù)學(xué)課外小組活動時遇到這樣一個問題:
如果一個不等式中含有絕對值,并且絕對值符號中含有未知數(shù),我們把這個不等式叫做絕對值不等式,求絕對值不等式|x|>3的解集.
小明同學(xué)的思路如下:
先根據(jù)絕對值的定義,求出|x|恰好是3時x的值,并在數(shù)軸上表示為點(diǎn)A,B,如圖所示.觀察數(shù)軸發(fā)現(xiàn),以點(diǎn)A,B為分界點(diǎn)把數(shù)軸分為三部分:
點(diǎn)A左邊的點(diǎn)表示的數(shù)的絕對值大于3;
點(diǎn)A,B之間的點(diǎn)表示的數(shù)的絕對值小于3;
點(diǎn)B右邊的點(diǎn)表示的數(shù)的絕對值大于3.
因此,小明得出結(jié)論絕對值不等式|x|>3的解集為:x<-3或x>3.
參照小明的思路,解決下列問題:
(1)請你直接寫出下列絕對值不等式的解集.
①|(zhì)x|>1的解集是 .
②|x|<2.5的解集是 .
(2)求絕對值不等式2|x-3|+5>13的解集.
(3)直接寫出不等式x2>4的解集是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程 x2-6x+m+4=0有兩個實(shí)數(shù)根 x1,x2.
(1)求m的取值范圍;
(2)若 x1,x2滿足x2-2x1=-3 ,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:∠1+∠2=180°,∠B=∠D,CD平分∠ACF.
(1)DE與BF平行嗎?請說明理由.
(2)AB與CD位置關(guān)系如何?為什么?
(3)AB平分∠CAE嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com