【題目】已知在四邊形ABCD中,∠A=90°,AB=3,AD=4,BC=12,CD=13,求四邊形ABCD的面積.

【答案】36

【解析】

試題根據(jù)勾股定理求得BD=5;由勾股定理的逆定理判定△BCD為直角三角形,則四邊形ABCD的面積=△ABD的面積+△BCD的面積.

試題解析:△ABD中,∠A是直角,AB=3,AD=4,

由勾股定理得 BD2=AD2+AB2=25.則BD=5

△BCD中,BC=12DC=13,

∴CD2=BD2+BC2=169

∴△BCD為直角三角形,且∠DBC=90°,

∴S四邊形ABCD=SABD+SBCD=ADAB+BDBC=×4×3+×5×12=36

即四邊形ABCD的面積是36

考點: 1.勾股定理;2.勾股定理的逆定理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=3,AD=4,動點Q從點A出發(fā),以每秒1個單位的速度,沿AB向點B移動;同時點P從點B出發(fā),仍以每秒1個單位的速度,沿BC向點C移動,連接QP,QD,PD.若兩個點同時運(yùn)動的時間為x秒(0<x≤3),解答下列問題:

(1)設(shè)△QPD的面積為S,用含x的函數(shù)關(guān)系式表示S;當(dāng)x為何值時,S有最大值?并求出最小值;
(2)是否存在x的值,使得QP⊥DP?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形ABCD中,AB=4cm,BC=6cm,點EAB中點,如果點P在線段BC上以每秒2cm的速度由點B向點C運(yùn)動,同時,點Q在線段CD上由點C向點D運(yùn)動.設(shè)運(yùn)動時間為t秒.

(1)當(dāng)t=2時,求△EBP的面積

(2)若點Q以與點P不同的速度運(yùn)動,經(jīng)過幾秒△BPE△CQP全等,此時點Q的速度是多少?

(3)若點Q以(2)中的運(yùn)動速度從點C出發(fā),點P以原來的運(yùn)動速度從點B同時出發(fā),都逆時針沿長方形ABCD的四邊運(yùn)動,求經(jīng)過多長時間點P與點Q第一次在長方形ABCD的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,ABC是等邊三角形,BDAC,EBC延長線上的一點,且∠CED=30°.

(1)求證:DB=DE.

(2)在圖中過DDFBEBEF,若CF=3,求ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在Rt△ACB中,∠BAC=90°AB=AC,分別過B、C兩點作過點A的直線l的垂線,垂足為D、E;

1)如圖1,當(dāng)D、E兩點在直線BC的同側(cè)時,猜想,BD、CEDE三條線段有怎樣的數(shù)量關(guān)系?并說明理由.

2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

3)如圖3,∠BAC=90°,AB=25,AC=35.點PB點出發(fā)沿B→A→C路徑向終點C運(yùn)動;點QC點出發(fā)沿C→A→B路徑向終點B運(yùn)動.點PQ分別以每秒23個單位的速度同時開始運(yùn)動,只要有一點到達(dá)相應(yīng)的終點時兩點同時停止運(yùn)動;在運(yùn)動過程中,分別過PQPF⊥lF,QG⊥lG.問:點P運(yùn)動多少秒時,△PFA△QAG全等?(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=40°,D點是∠ABC和∠ACB角平分線的交點,則∠BDC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形ABCD的紙片,長AD=10厘米,寬AB=8厘米,AD沿點A對折,點D正好落在BC上的點F處,AE是折痕。

(1)圖中有全等的三角形嗎?如果有,請直接寫出來;

(2)求線段BF的長;

(3)求線段EF的長;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用(-1,0)表示A點的位置,用(2,1)表示B點的位置,那么:

(1)畫出直角坐標(biāo)系。

(2)寫出△DEF的三個頂點的坐標(biāo)。

(3)在圖中表示出點M(6,2),N(4,4)的位置。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ACB△ECD都是等腰直角三角形,∠ACB=∠DCE=90°.

(1)求證:BD=AE;

(2)若△ACB不動,把△DCE繞點C旋轉(zhuǎn)到使點D落在AB邊上,如圖2所示,問上述結(jié)論還成立嗎?若成立,給予證明.

查看答案和解析>>

同步練習(xí)冊答案