【題目】已知:以O(shè)為圓心的扇形AOB中,∠AOB=90°,點(diǎn)C為 上一動(dòng)點(diǎn),射線(xiàn)AC交射線(xiàn)OB于點(diǎn)D,過(guò)點(diǎn)D作OD的垂線(xiàn)交射線(xiàn)OC于點(diǎn)E,聯(lián)結(jié)AE.

(1)如圖1,當(dāng)四邊形AODE為矩形時(shí),求∠ADO的度數(shù);
(2)當(dāng)扇形的半徑長(zhǎng)為5,且AC=6時(shí),求線(xiàn)段DE的長(zhǎng);
(3)聯(lián)結(jié)BC,試問(wèn):在點(diǎn)C運(yùn)動(dòng)的過(guò)程中,∠BCD的大小是否確定?若是,請(qǐng)求出它的度數(shù);若不是,請(qǐng)說(shuō)明理由.

【答案】
(1)解:如圖1中,

∵四邊形ABCD是矩形,

∴AD=EC,AC=CD,OC=CE,∠AOD=90°

∴AC=OC=OA,

∴△AOC是等邊三角形,

∴∠OAD=60°,

∴∠ADO=90°﹣∠OAD=30°.


(2)解:如圖2中,作OH⊥AD于H.

∵OA=OC,OH⊥AC,

∴AH=HC=3,

∵∠OAH=∠OAD,∠AHO=∠AOD,

∴△AOH∽△ADO,

= ,

=

∴AD= ,

∴CD=AD﹣AC= ,

∵DE⊥OD,

∴∠EDO=90°,

∴∠AOD+∠EDO=180°,

∴DE∥OA,

= ,

=

∴DE=


(3)解:如圖3中,結(jié)論:∠BCD的值是確定的.∠BCD=45°.

理由:連接AB、BC.

∵∠BCD=∠BAC+∠ABC,

又∵∠BAC= ∠BOC,∠ABC= ∠AOC,

∴∠BCD= ∠BOC+ ∠AOC= (∠BCO+∠AOC)= ×90°=45°.


【解析】(1)利用矩形的性質(zhì),只要證明△OAC是等邊三角形即可求解題中問(wèn)題;(2)作OH⊥AD于H.由△AOH∽△ADO,推出=,可得AD的長(zhǎng)度,CD=AD﹣AC的長(zhǎng)度,由DE∥OA,可得=,即可求出DE;(3)結(jié)論:∠BCD的值是確定的.∠BCD=45°.連接AB、BC.由∠BCD=∠BAC+∠ABC,又∠BAC= ∠BOC,∠ABC= ∠AOC,即可得出結(jié)論。
【考點(diǎn)精析】掌握矩形的性質(zhì)和平行線(xiàn)分線(xiàn)段成比例是解答本題的根本,需要知道矩形的四個(gè)角都是直角,矩形的對(duì)角線(xiàn)相等;三條平行線(xiàn)截兩條直線(xiàn),所得的對(duì)應(yīng)線(xiàn)段成比例.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面四個(gè)圖形中,既是中心對(duì)稱(chēng)圖形又是軸對(duì)稱(chēng)圖形的是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,ADBCCEAB,垂足分別為DE,AD、CE交于點(diǎn)H,請(qǐng)你添加一個(gè)適當(dāng)?shù)臈l件:_____,使AEH≌△CEB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把四張形狀大小完全相同的小長(zhǎng)方形卡片(如圖①)不重疊地放在一個(gè)底面為長(zhǎng)方形(長(zhǎng)為mcm,寬為ncm)的盒子底部(如圖②)盒子底面未被卡片覆蓋的部分用陰影表示,則圖②中兩塊陰影部分的周長(zhǎng)和是( )

A.4m cmB.4n cmC.2(mn) cmD.4(mn) cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AD平分∠BAC,

(1)求作⊙O,圓心O是AD的中垂線(xiàn)與AB的交點(diǎn),OD為半徑.(尺規(guī)作圖,不寫(xiě)作法,保留痕跡)
(2)求證:BC是⊙O切線(xiàn).
(3)若BD=5,DC=3,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD的面積為16cm2,對(duì)交線(xiàn)交于點(diǎn)O;以AB、AO為鄰邊作平行四邊AOC1B,對(duì)角線(xiàn)交于點(diǎn)O1,以AB、AO1為鄰邊作平行四邊形AO1C2B,…;依此類(lèi)推,則平行四邊形AO4C5B的面積為( )

A. cm2 B. 1cm2 C. 2cm2 D. 4cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表是橘子的銷(xiāo)售額隨橘子賣(mài)出質(zhì)量的變化表:

質(zhì)量/千克

1

2

3

4

5

6

7

8

9

銷(xiāo)售額/元

2

4

6

8

10

12

14

16

18

1)這個(gè)表反映了哪兩個(gè)變量之間的關(guān)系?哪個(gè)是自變量?哪個(gè)是因變量?

2)當(dāng)橘子賣(mài)出5千克時(shí),銷(xiāo)售額是_______元.

3)如果用表示橘子賣(mài)出的質(zhì)量,表示銷(xiāo)售額,按表中給出的關(guān)系,之間的關(guān)系式為_(kāi)_____.

4)當(dāng)橘子的銷(xiāo)售額是100元時(shí),共賣(mài)出多少千克橘子?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,兩正方形在數(shù)軸上運(yùn)動(dòng),起始狀態(tài)如圖所示.A、F表示的數(shù)分別為-210,大正方形的邊長(zhǎng)為4個(gè)單位長(zhǎng)度,小正方形的邊長(zhǎng)為2個(gè)單位長(zhǎng)度,兩正方形同時(shí)出發(fā),相向而行,小正方形的速度是大正方形速度的兩倍,兩個(gè)正方形從相遇到剛好完全離開(kāi)用時(shí)2秒.完成下列問(wèn)題:

1)求起始位置D、E表示的數(shù);

2)求兩正方形運(yùn)動(dòng)的速度;

3MN分別是AD、EF中點(diǎn),當(dāng)正方形開(kāi)始運(yùn)動(dòng)時(shí),射線(xiàn)MA開(kāi)始以15°/s的速度順時(shí)針旋轉(zhuǎn)至MD結(jié)束,射線(xiàn)NF開(kāi)始以30°/s的速度逆時(shí)針旋轉(zhuǎn)至NE結(jié)束,若兩射線(xiàn)所在直線(xiàn)互相垂直時(shí),求MN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在學(xué)習(xí)過(guò)程中,對(duì)教材中的一個(gè)有趣問(wèn)題做如下探究:

(習(xí)題回顧)已知:如圖1,在中,,是角平分線(xiàn),是高,、相交于點(diǎn).求證:;

(變式思考)如圖2,在中,邊上的高,若的外角的平分線(xiàn)交的延長(zhǎng)線(xiàn)于點(diǎn),其反向延長(zhǎng)線(xiàn)與邊的延長(zhǎng)線(xiàn)交于點(diǎn),則還相等嗎?說(shuō)明理由;

(探究延伸)如圖3,在中,上存在一點(diǎn),使得,的平分線(xiàn)于點(diǎn).的外角的平分線(xiàn)所在直線(xiàn)的延長(zhǎng)線(xiàn)交于點(diǎn).直接寫(xiě)出的數(shù)量關(guān)系.

查看答案和解析>>

同步練習(xí)冊(cè)答案