【題目】如圖①,△ABC中,AC=BC,∠A=30°,點D在AB邊上且∠ADC=45°.
(1)求∠BCD的度數(shù);
(2)將圖①中的△BCD繞點B順時針旋轉,得到△BC′D′.當點D′恰好落在BC邊上時,如圖②所示,連接C′C并延長交AB于點E.
①求∠C′CB的度數(shù);
②求證:△C′BD′≌△CAE.
【答案】(1)15°;(2)①75°;②答案見解析.
【解析】試題分析:(1)根據(jù)三角形外角性質(zhì),即可得到∠BCD=∠ADC﹣∠CBA=15°;
(2)①由旋轉可得CB=C'B=AC,∠C'BD'=∠CBD=∠A=30°,再根據(jù)等腰三角形的性質(zhì),即可得到∠CC'B=∠C'CB=75°;
②先根據(jù)AC=C'B,∠C'BD'=∠A,得出∠CEB=∠C'CB﹣∠CBA=45°,進而得到∠ACE=∠CEB﹣∠A=15°,據(jù)此可得∠BC'D'=∠BCD=∠ACE,運用ASA即可判定△C'BD'≌△CAE.
試題解析:解:(1)∵AC=BC,∠A=30°,∴∠CBA=∠CAB=30°.∵∠ADC=45°,∴∠BCD=∠ADC﹣∠CBA=15°=∠BC'D';
(2)①由旋轉可得CB=C'B=AC,∠C'BD'=∠CBD=∠A=30°,∴∠CC'B=∠C'CB=75°;
②證明:∵AC=C'B,∠C'BD'=∠A,∴∠CEB=∠C'CB﹣∠CBA=45°,∴∠ACE=∠CEB﹣∠A=15°,∴∠BC'D'=∠BCD=∠ACE.在△C'BD'和△CAE中,,∴△C'BD'≌△CAE(ASA).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠MON=25°,矩形ABCD的邊BC在OM上,對角線AC⊥ON.
(1)求∠ACD度數(shù);
(2)當AC=5時,求AD的長.(參考數(shù)據(jù):sin25°=0.42;cos25°=0.91;tan25°=0.47,結果精確到0.1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】暑假期間,小李同學勤工儉學購進一批礦泉水和運動飲料在運動場進行銷售,其進價與售價如下表:
進價(元/瓶) | 售價(元/瓶) | |
礦泉水 | 0.75 | 2 |
運動飲料 | 3 | 4 |
(1)若小李同學購進礦泉水和運動飲料共 30 瓶,用去了 67.5 元,并且全部售完,問小李同學在該買賣中賺了多少錢?
(2)為了進一步滿足同學們的需求,小李同學決定用不超過 400 元的資金購進礦泉水和運動飲料共200 瓶,問最多購進多少瓶運動飲料?
(3)小李同學賺錢后,為了回報社會,買了一批書籍送給貧困山區(qū)的孩子,如果分給每位孩子 4 本書,那么剩下 10 本書;如果分給每位孩子 5 本書,那么最后一位孩子分得的書不足 4 本,但至少1本,則小李同學買了多少本書?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校準備組織師生共60人,從南靖乘動車前往廈門參加夏令營活動,動車票價格如表所示:(教師按成人票價購買,學生按學生票價購買).
運行區(qū)間 | 成人票價(元/張) | 學生票價(元/張) | ||
出發(fā)站 | 終點站 | 一等座 | 二等座 | 二等座 |
南靖 | 廈門 | 26 | 22 | 16 |
若師生均購買二等座票,則共需1020元.
(1)參加活動的教師和學生各有多少人?
(2)由于部分教師需提早前往做準備工作,這部分教師均購買一等座票,而后續(xù)前往的教師和學生均購買二等座票.設提早前往的教師有x人,購買一、二等座票全部費用為y元.
①求y關于x的函數(shù)關系式;
②若購買一、二等座票全部費用不多于1032元,則提早前往的教師最多只能多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場對A、B兩款運動鞋的銷售情況進行了為期5天的統(tǒng)計,得到了這兩款運動鞋每天的銷售量及總銷售額統(tǒng)計圖(如圖所示).已知第4天B款運動鞋的銷售量是A款的.
(1)求第4天B款運動鞋的銷售量.
(2)這5天期間,B款運動鞋每天銷售量的平均數(shù)和中位數(shù)分別是多少?
(3)若在這5天期間兩款運動鞋的銷售單價保持不變,求第3天的總銷售額(銷售額=銷售單價×銷售量).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知、、、是正方形網(wǎng)格紙上的四個格點,根據(jù)要求在網(wǎng)格中畫圖并標注相關字母.
①畫線段.
②畫直線.
③過點畫的垂線,垂足為.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在下列解答中,填空或填寫適當?shù)睦碛桑?/span>
(1),(已知)
______________.(___________________________________________)
________________(______________________________________)
(2)_______,(已知)
;(___________________________________)
(3)_______________,(已知)
__________________________.(_______________________________)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC與Rt△ABD中,,,AC、BD相交于點G,過點A作交CB的延長線于點E,過點B作交DA的延長線于點F,AE、BF相交于點H.
(1)證明:ΔABD≌△BAC.
(2)證明:四邊形AHBG是菱形.
(3)若AB=BC,證明四邊形AHBG是正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com