【題目】已知,點P是直角三角形ABC斜邊AB上一動點(不與A,B重合),分別過A,B向直線CP作垂線,垂足分別為E,F(xiàn),Q為斜邊AB的中點.

(1)如圖1,當(dāng)點P與點Q重合時,AE與BF的位置關(guān)系是   ,QE與QF的數(shù)量關(guān)系式   ;

(2)如圖2,當(dāng)點P在線段AB上不與點Q重合時,試判斷QE與QF的數(shù)量關(guān)系,并給予證明;

(3)如圖3,當(dāng)點P在線段BA(或AB)的延長線上時,此時(2)中的結(jié)論是否成立?請畫出圖形并給予證明.

【答案】解:(1)AEBF,QE=QF。

(2)QE=QF,證明如下:

如圖,延長FQ交AE于D,

AEBF,∴∠QAD=FBQ

FBQ和DAQ中,,

∴△FBQ≌△DAQ(ASA)。QF=QD。

AECP,EQ是直角三角形DEF斜邊上的中線。

QE=QF=QD,即QE=QF。

(3)(2)中的結(jié)論仍然成立。證明如下:

如圖,延長EQ、FB交于D,

AEBF,∴∠1=D

AQE和BQD中,,

∴△AQE≌△BQD(AAS),QE=QD。

BFCP,FQ是斜邊DE上的中線。QE=QF。

解析(1)證BFQ≌△AEQ即可。理由是:

如圖,Q為AB中點,AQ=BQ

BFCP,AECP,BFAE,BFQ=AEQ。

BFQ和AEQ中,,∴△BFQ≌△AEQ(AAS)。QE=QF。

(2)證FBQ≌△DAQ,推出QF=QD,根據(jù)直角三角形斜邊上中線性質(zhì)求出即可。

(3)證AEQ≌△BDQ,推出DQ=QE,根據(jù)直角三角形斜邊上中線性質(zhì)求出即可。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下表給出了某班6名同學(xué)的身高情況(單位:cm).

學(xué)生

A

B

C

D

E

F

身高(單位:cm)

165

____

166

____

____

172

身高與班級平

均身高的差值)

1

2

____

3

4

____

(1)完成表中空的部分;

(2)他們6人中最高身高比最矮身高高多少?

(3)如果身高達(dá)到或超過平均身高時叫達(dá)標(biāo)身高,那么這6名同學(xué)身高的達(dá)標(biāo)率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知Aam)、B2a,n)是反比例函數(shù)y=k0)與一次函數(shù)y=-x+b圖象上的兩個不同的交點,分別過A、B兩點作x軸的垂線,垂足分別為CD,連結(jié)OA、OB,若已知1≤a≤2,則求SOAB的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)用a根長度相同的火柴棒,按如圖①擺放時可擺成m個正方形,按如圖②擺放時可擺放2n個正方形.

(1)如圖①,當(dāng)m=2時,a= ,如圖②,當(dāng)n=3時,a= ;

(2) mn之間有何數(shù)量關(guān)系,請你寫出來并說明理由;

(3)現(xiàn)有56根火柴棒,現(xiàn)用若干根火柴棒擺成圖①的形狀后,剩下的火柴棒剛好可以擺成圖②的形狀。請你直接寫出一種擺放方法,并通過計算驗證你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,AB=AC,BAC=90°,DBC邊上任意一點,求證:BD+CD=2AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)一批進(jìn)價為20/件的日用商品,第一個月,按進(jìn)價提高50%的價格出售,售出400件;第二個月,商店準(zhǔn)備在不低于原售價的基礎(chǔ)上進(jìn)行加價銷售,根據(jù)銷售經(jīng)驗,提高銷售單價會導(dǎo)致銷售量的減少.銷售量y()與銷售單價x()的關(guān)系如圖所示.

(1)yx之間的函數(shù)表達(dá)式;

(2)第二個月的銷售單價定為多少元時,可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)3y22y4y2;

(2)43st4;

(3)2(2ab3a)-3(2aab);

(4)a2-[-4ab+(aba2)]-2ab.

(5).(-1)3÷3×[3-(-3)2];

(6)×÷(-919);

(7)-24×;

(8)(-81÷(-16);

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某自行車廠一周計劃生產(chǎn)1400輛自行車,平均每天生產(chǎn)200輛,由于各種原因?qū)嶋H每天的生產(chǎn)量與計劃量相比有出入。下表是某周的生產(chǎn)情況(超產(chǎn)為正,減產(chǎn)為負(fù)):

星期

增減

+4

-2

-5

+13

-11

+17

-9

1)根據(jù)記錄可知前三天共生產(chǎn) 輛;

2)產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn) 輛;

3)該廠實行每周計件工資制,每生產(chǎn)一輛車可得60元,若超額完成任務(wù),則超過部分每輛另獎6元;少生產(chǎn)一輛扣15元,那么該廠工人這一周的工資總額是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知△ABC是等邊三角形,點D,E分別在邊BC,AC上,且CDAE,ADBE相交于點F

1)求證:∠ABE=∠CAD;

2)如圖2,以AD為邊向左作等邊△ADG,連接BG

。┰嚺袛嗨倪呅AGBE的形狀,并說明理由;

ⅱ)若設(shè)BD1DCk0k1),求四邊形AGBE與△ABC的周長比(用含k的代數(shù)式表示).

查看答案和解析>>

同步練習(xí)冊答案