【題目】操作探究:小聰在一張長條形的紙面上畫了一條數(shù)軸(如圖所示),
操作一:(1)折疊紙面,使1表示的點(diǎn)與1的點(diǎn)重合,則3的點(diǎn)與_ __表示的點(diǎn)重合;
操作二:(2)折疊紙面,使2表示的點(diǎn)與6表示的點(diǎn)重合,請你回答以下問題:
① 5表示的點(diǎn)與數(shù)___表示的點(diǎn)重合;
② 若數(shù)軸上A、B兩點(diǎn)之間距離為20,其中A在B的左側(cè),且A、B兩點(diǎn)經(jīng)折疊后重合,求A、B兩點(diǎn)表示的數(shù)各是多少
③ 已知在數(shù)軸上點(diǎn)M表示的數(shù)是m,點(diǎn)M到第②題中的A、B兩點(diǎn)的距離之和為30,求m的值。
【答案】(1)3;(2)①9;②A表示的數(shù)是-8,點(diǎn)B表示的數(shù)是12;③-13或17.
【解析】
(1)直接利用已知得出中點(diǎn)進(jìn)而得出答案;
(2)①利用-2表示的點(diǎn)與6表示的點(diǎn)重合得出中點(diǎn),進(jìn)而得出答案;
②利用數(shù)軸再結(jié)合A、B兩點(diǎn)之間距離為20,即可得出兩點(diǎn)表示出的數(shù)據(jù);
③利用②中A,B的位置,利用分類討論進(jìn)而得出m的值.
解:(1)折疊紙面,使1表示的點(diǎn)與-1表示的點(diǎn)重合,則對稱中心是0,
∴-3表示的點(diǎn)與3表示的點(diǎn)重合,
故答案為:3;
(2)∵-2表示的點(diǎn)與6表示的點(diǎn)重合,
∴對稱中心是數(shù)2表示的點(diǎn),
①-5表示的點(diǎn)與數(shù)9表示的點(diǎn)重合;
故答案為:9.
②若數(shù)軸上A、B兩點(diǎn)之間的距離為20(A在B的左側(cè)),
則點(diǎn)A表示的數(shù)是2-10=-8,點(diǎn)B表示的數(shù)是2+10=12.
③當(dāng)點(diǎn)M在點(diǎn)A左側(cè)時,則12-m+(-8-m)=30,
解得:m=-13;
當(dāng)點(diǎn)M在點(diǎn)B右側(cè)時,則m-(-8)+m-12=30,
解得:m=17;
綜上,m=-13或17;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩個關(guān)于x的一元二次方程M: ;N: ,其中,有下列三個結(jié)論:
①若方程M有兩個相等的實(shí)數(shù)根,則方程N也有兩個相等的實(shí)數(shù)根;
②若6是方程M的一個根,則是方程N的一個根;
③若方程M和方程N有一個相同的根,則這個根一定是其中正確結(jié)論的個數(shù)是
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對某一個函數(shù)給出如下定義:若存在實(shí)數(shù),對于任意的函數(shù)值,都滿足,則稱這個函數(shù)是有界函數(shù),在所有滿足條件的中,其最小值稱為這個函數(shù)的邊界值.例如,下圖中的函數(shù)是有界函數(shù),其邊界值是1.
(1)分別判斷函數(shù)和是不是有界函數(shù)?若是有界函數(shù),求其邊界值;
(2)若函數(shù)的邊界值是2,且這個函數(shù)的最大值也是2,求的取值范圍;
(3)將函數(shù)的圖象向下平移個單位,得到的函數(shù)的邊界值是,當(dāng)在什么范圍時,滿足?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,的中線BD,CE交于點(diǎn)O,F,G分別是BO,CO的中點(diǎn).
(1)求證:四邊形DEFG是平行四邊形;
(2)若AB=AC,則四邊形DEFG是 (填寫特殊的平行四邊形);
(3)當(dāng)四邊形DEFG為邊長為2的正方形時,的周長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,在下列五個結(jié)論中: ①abc<0;②4ac﹣b2>0;③a﹣b+c>2;④a<b<0;⑤ac+2=b,
正確的個數(shù)有________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:中,,求證:,下面寫出可運(yùn)用反證法證明這個命題的四個步驟:
①∴,這與三角形內(nèi)角和為矛盾,②因此假設(shè)不成立.∴,③假設(shè)在中,,④由,得,即.這四個步驟正確的順序應(yīng)是( 。
A.③④②①B.③④①②C.①②③④D.④③①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】動點(diǎn)A從原點(diǎn)出發(fā)向數(shù)軸負(fù)方向運(yùn)動,同時,動點(diǎn)B也從原點(diǎn)出發(fā)向數(shù)軸正方向運(yùn)動,運(yùn)動到3秒鐘時,兩點(diǎn)相距15個單位長度.已知動點(diǎn)A、B的運(yùn)動速度比之是3:2(速度單位:1個單位長度/秒).
(1)求兩個動點(diǎn)運(yùn)動的速度;
(2)A、B兩點(diǎn)運(yùn)動到3秒時停止運(yùn)動,請?jiān)跀?shù)軸上標(biāo)出此時A、B兩點(diǎn)的位置;
(3)若A、B兩點(diǎn)分別從(2)中標(biāo)出的位置再次同時開始在數(shù)軸上運(yùn)動,運(yùn)動的速度不變,運(yùn)動的方向不限,問:經(jīng)過幾秒鐘,A、B兩點(diǎn)之間相距4個單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的方程有兩個實(shí)數(shù)根、.
(1)求實(shí)數(shù)k的取值范圍;
(2)若、滿足,求實(shí)數(shù)的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com