【題目】如圖,正方形ABCD中,點(diǎn)EBC上一點(diǎn),直線AEBD于點(diǎn)M,交DC的延長(zhǎng)線于點(diǎn)F,GEF的中點(diǎn),連接CG.求證:

(1)ABM≌△CBM;

(2)CGCM.

【答案】(1)證明見解析;(2)證明見解析.

【解析】

(1)利用正方形的性質(zhì)得出AB=CB,∠ABM=CBM,進(jìn)而利用SAS得出答案;

(2)直接利用全等三角形的性質(zhì)得出∠BAM=BCM,進(jìn)而得出∠BAM=F,∠BCM=GCF進(jìn)而求出答案.

證明:(1)∵四邊形ABCD是正方形,

∴ABCB,∠ABM∠CBM,

△ABM△CBM中,

∴△ABM≌△CBM(SAS)

(2)∵△ABM≌△CBM,

∴∠BAM∠BCM

∵∠ECF90°,GEF的中點(diǎn),

∴GCGF

∴∠GCF∠F,

∵AB∥DF,

∴∠BAM∠F,

∴∠BCM∠GCF,

∴∠BCM∠GCE∠GCF∠GCE90°,

∴GC⊥CM.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,線段AB、CD相交于點(diǎn)O,連結(jié)AC、BD,我們把形如圖1的圖形稱之為“8字形”,那么在這一個(gè)簡(jiǎn)單的圖形中,到底隱藏了哪些數(shù)學(xué)知識(shí)呢?下面就請(qǐng)你發(fā)揮聰明才智,解決以下問(wèn)題:

(1)在圖1中,請(qǐng)寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系,并說(shuō)明理由;

(2)仔細(xì)觀察,在圖2中“8字形”的個(gè)數(shù)有 個(gè);

(3)在圖2中,若∠B70°,∠C84°,∠CAB和∠BDC的平分線APDP相交于點(diǎn)P,并且與CD、AB分別相交于M、N利用(1)的結(jié)論,試求∠P的度數(shù);

(4)在圖3中,如果∠B和∠C為任意角,并且APDP分別是∠CAB和∠BDC的四等分線,即∠PAOCAO, BDPBDO,那么∠P與∠C、∠B之間存在的數(shù)量關(guān)系是 (直接寫出結(jié)論即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)E,F(xiàn)分別在BC,CD上,將△ABE沿AE折疊,使點(diǎn)B落在AC上的點(diǎn)B′處,又將△CEF沿EF折疊,使點(diǎn)C落在EB′與AD的交點(diǎn)C′處.則CF:AB的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的方格地面上,標(biāo)有編號(hào)A,B,C的3個(gè)小方格地面是空地,另外6個(gè)小方格地面是草坪,除此以外小方格地面完全相同.

(1)一只自由飛行的鳥,將隨意地落在圖中的方格地面上,問(wèn)小鳥落在草坪上的概率是多少?
(2)現(xiàn)從3個(gè)小方格空地中任意選取2個(gè)種植草坪,則剛好選取A和B的2個(gè)小方格空地種植草坪的概率是多少(用樹形圖或列表法求解)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A地某廠和B地某廠同時(shí)制成機(jī)器若干臺(tái),A地某廠可支援外地10臺(tái),B地某廠可支援外地4臺(tái),現(xiàn)決定給C8臺(tái),D6臺(tái).已知從A運(yùn)往D、C兩地的運(yùn)費(fèi)分別是200元每臺(tái)、400元每臺(tái),從B運(yùn)往D、C兩地的運(yùn)費(fèi)分別是150元每臺(tái)、250元每臺(tái).

1)設(shè)B地某廠運(yùn)往Dx臺(tái),求總運(yùn)費(fèi)為多少元?

2)在(1)中,當(dāng)x2時(shí),總運(yùn)費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)A在第一象限,點(diǎn)B,C的坐標(biāo)為(2,1),(6,1),∠BAC=90°,AB=AC,直線AB交x軸于點(diǎn)P.若△ABC與△A'B'C'關(guān)于點(diǎn)P成中心對(duì)稱,則點(diǎn)A'的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知l1//l2,射線MN分別和直線l1,l2交于點(diǎn)A,B,射線ME分別和直線l1,l2交于點(diǎn)C,D,點(diǎn)P在射線MN上運(yùn)動(dòng)(P點(diǎn)與A,B,M三點(diǎn)不重合),設(shè)∠PDB=α ,PCA=β ,CPD=γ .

(1)如果點(diǎn)PA,B兩點(diǎn)之間運(yùn)動(dòng)時(shí),α,β,γ之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

(2)如果點(diǎn)PA,B兩點(diǎn)之外運(yùn)動(dòng)時(shí),α,β,γ之間有何數(shù)量關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC的角平分線CD、BE相交于F,∠A90°,EGBC,且CGEGG,下列結(jié)論:①∠CEG2DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFBCGE.其中正確的結(jié)論是( )

A. ②③B. ①②④C. ①③④D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知MB=ND,MBA=NDC,下列條件中不能判定ABMCDN的是(

A. M=N B. AM=CN C. AB=CD D. AMCN

查看答案和解析>>

同步練習(xí)冊(cè)答案