【題目】如圖,平面直角坐標(biāo)系中,直線AB:交y軸于點(diǎn),交x軸于點(diǎn)B.
(1)求直線AB的表達(dá)式和點(diǎn)B的坐標(biāo);
(2)直線l垂直平分OB交AB于點(diǎn)D,交x軸于點(diǎn)E,點(diǎn)P是直線l上一動(dòng)點(diǎn),且在點(diǎn)D的上方,設(shè)點(diǎn)P的縱坐標(biāo)為n.
①當(dāng)時(shí),求點(diǎn)P的坐標(biāo);
②在①的條件下,以PB為斜邊在第一象限作等腰直角,求點(diǎn)C的坐標(biāo).
【答案】(1)(4,0);(2)①(2,6);②(6,4)
【解析】
(1)把點(diǎn)A的坐標(biāo)代入直線解析式可求得b=4,則直線的解析式為y=-x+4,令y=0可求得x=4,故此可求得點(diǎn)B的坐標(biāo);
(2)①由題l垂直平分OB可知OE=BE=2,將x=2代入直線AB的解析式可求得點(diǎn)D的坐標(biāo),設(shè)點(diǎn)P的坐標(biāo)為(2,n),然后依據(jù)S△APB=S△APD+S△BPD可得到△APB的面積與n的函數(shù)關(guān)系式為S△APB=2n-4;由S△ABP=8得到關(guān)于n的方程可求得n的值,從而得到點(diǎn)P的坐標(biāo);
②如圖1所示,過(guò)點(diǎn)C作CM⊥l,垂足為M,再過(guò)點(diǎn)B作BN⊥CM于點(diǎn)N.設(shè)點(diǎn)C的坐標(biāo)為(p,q),先證明△PCM≌△CBN,得到CM=BN,PM=CN,然后由CM=BN,PM=CN列出關(guān)于p、q的方程組可求得p、q的值;如圖2所示,同理可求得點(diǎn)C的坐標(biāo).
解:(1)∵把A(0,4)代入y=-x+b得b=4,
∴直線AB的函數(shù)表達(dá)式為:y=-x+4.
令y=0得:-x+4=0,解得:x=4,
∴點(diǎn)B的坐標(biāo)為(4,0);
(2)①∵l垂直平分OB,
∴OE=BE=2.
∵將x=2代入y=-x+4得:y=-2+4=2.
∴點(diǎn)D的坐標(biāo)為(2,2).
∵點(diǎn)P的坐標(biāo)為(2,n),
∴PD=n-2.
∵S△APB=S△APD+S△BPD,
∴S△ABP=PDOE+PDBE=(n-2)×2+(n-2)×2=2n-4.
∵S△ABP=8,
∴2n-4=8,解得:n=6.∴點(diǎn)P的坐標(biāo)為(2,6).
②如圖1所示:過(guò)點(diǎn)C作CM⊥l,垂足為M,再過(guò)點(diǎn)B作BN⊥CM于點(diǎn)N.
設(shè)點(diǎn)C(p,q).
∵△PBC為等腰直角三角形,PB為斜邊,
∴PC=PB,∠PCM+∠MCB=90°,
∵CM⊥l,BN⊥CM,
∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.
∴∠MPC=∠NCB.
∵PC=BC,
,
∴△PCM≌△CBN.
∴CM=BN,PM=CN.
∴ ,解得.
∴點(diǎn)C的坐標(biāo)為(6,4).
如圖2所示:過(guò)點(diǎn)C作CM⊥l,垂足為M,再過(guò)點(diǎn)B作BN⊥CM于點(diǎn)N.
設(shè)點(diǎn)C(p,q).
∵△PBC為等腰直角三角形,PB為斜邊,
∴PC=CB,∠PCM+∠MCB=90°.
∵CM⊥l,BN⊥CM,
∴∠PMC=∠BNC=90°,∠MPC+∠PCM=90°.
∴∠MPC=∠NCB.
在△PCM和△CBN中,
,
∴△PCM≌△CBN.
∴CM=BN,PM=CN.
∴ ,解得 .
∴點(diǎn)C的坐標(biāo)為(0,2)舍去.
綜上所述點(diǎn)C的坐標(biāo)為(6,4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】方程 =0有兩個(gè)相等的實(shí)數(shù)根,且滿足 = ,則 的值是( )
A.-2或3
B.3
C.-2
D.-3或2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)的許多創(chuàng)新和發(fā)展都位居世界前列,如南宋數(shù)學(xué)家楊輝(約13世紀(jì))所著的《詳解九章算術(shù)》一書(shū)中,用如圖的三角形解釋二項(xiàng)和(a+b)n的展開(kāi)式的各項(xiàng)系數(shù),此三角形稱為“楊輝三角”.
根據(jù)“楊輝三角”請(qǐng)計(jì)算(a+b)20的展開(kāi)式中第三項(xiàng)的系數(shù)為( )
A.2017
B.2016
C.191
D.190
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是∠BAC的平分線,M是BC的中點(diǎn),過(guò)M作MP∥AD交AC于P,求證:AB+AP=PC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次課題學(xué)習(xí)中,老師讓同學(xué)們合作編題.某學(xué)習(xí)小組受趙爽弦圖的啟發(fā),編寫(xiě)了下面這道題,請(qǐng)你來(lái)解一解.
如圖,將矩形ABCD的四邊BA、CB、DC、AD分別延長(zhǎng)至E、F、G、H,使得AE=CG,BF=DH,連結(jié)EF、FG、GH、HE.
(1)求證:四邊形EFGH為平行四邊形;
(2)若矩形ABCD是邊長(zhǎng)為1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫(huà)弧交AD于點(diǎn)F,再分別以點(diǎn)B、F為圓心,大于 BF的相同長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P;連接AP并延長(zhǎng)交BC于點(diǎn)E,連接EF,則所得四邊形ABEF是菱形. (Ⅰ)根據(jù)以上尺規(guī)作圖的過(guò)程,求證:四邊形ABEF是菱形;
(Ⅱ)若菱形ABEF的周長(zhǎng)為16,AE=4 ,求∠C的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某商場(chǎng)為了吸引顧客,制作了可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)(轉(zhuǎn)盤(pán)被等分成20個(gè)扇形),顧客每購(gòu)買(mǎi)200元的商品,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的機(jī)會(huì),如果轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán),轉(zhuǎn)盤(pán)停止后指針正好對(duì)準(zhǔn)紅色、黃色或綠色區(qū)域,就可以分別獲得200元、100元、50元的購(gòu)物券;如果不愿意,可直接獲得30元的購(gòu)物券.
(1)求轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤(pán)獲得購(gòu)物券的概率;
(2)如果你在該商場(chǎng)消費(fèi)210元,你會(huì)選擇轉(zhuǎn)轉(zhuǎn)盤(pán)還是直接獲得購(gòu)物券?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,DB∥AC,且DB= AC,E是AC的中點(diǎn),
(1)求證:BC=DE;
(2)連接AD、BE,若要使四邊形DBEA是矩形,則給△ABC添加什么條件,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,的垂直平分線交于點(diǎn),交的延長(zhǎng)線于點(diǎn).
(1)若,則為 度;
(2)如果(),其余條件不變,求的度數(shù);
(3)補(bǔ)全規(guī)律:等腰三角形一腰的垂直平分線與 相交所成的銳角等于 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com