【題目】如圖,在ABCD中,∠ACB=45°,點(diǎn)E在對(duì)角線AC上,BE=BA,BF⊥AC于點(diǎn)F,BF的延長線交AD于點(diǎn)G.點(diǎn)H在BC的延長線上,且CH=AG,連接EH.
(1)若BC=12,AB=13,求AF的長;
(2)求證:EB=EH.
【答案】(1)5;(2)證明見解析.
【解析】
(1)依據(jù)BF⊥AC,∠ACB=45°,BC=12,可得等腰Rt△BCF中,BF=sin45°×BC=12,再根據(jù)勾股定理,即可得到Rt△ABF中,AF==5;
(2)連接GE,過A作AF⊥AG,交BG于P,連接PE,判定四邊形APEG是正方形,即可得到PF=EF,AP=AG=CH,進(jìn)而得出△APB≌△HCE,依據(jù)AB=EH,AB=BE,即可得到BE=EH.
解:(1)如圖,∵BF⊥AC,∠ACB=45°,BC=12,
∴等腰Rt△BCF中,BF=sin45°×BC=12,
又∵AB=13,
∴Rt△ABF中,AF==5;
(2)如圖,連接GE,過A作AF⊥AG,交BG于P,連接PE,
∵BE=BA,BF⊥AC,
∴AF=FE,
∴BG是AE的垂直平分線,
∴AG=EG,AP=EP,
∵∠GAE=∠ACB=45°,
∴△AGE是等腰直角三角形,即∠AGE=90°,
△APE是等腰直角三角形,即∠APE=90°,
∴∠APE=∠PAG=∠AGE=90°,
又∵AG=EG,
∴四邊形APEG是正方形,
∴PF=EF,AP=AG=CH,
又∵BF=CF,
∴BP=CE,
∵∠APG=45°=∠BCF,
∴∠APB=∠HCE=135°,
∴△APB≌△HCE(SAS),
∴AB=EH,
又∵AB=BE,
∴BE=EH.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD,
(1)求證:∠1+∠2=90°.
(2)若∠ABD的平分線與CD的延長線交于F,且∠F=55°,求∠ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形AOBO2的頂點(diǎn)A的坐標(biāo)為A(0,2),O1為正方形AOBO2的中心;以正方形AOBO2的對(duì)角線AB為邊,在AB的右側(cè)作正方形ABO3A1,O2為正方形ABO3A1的中心;再以正方形ABO3A1的對(duì)角線A1B為邊,在A1B的右側(cè)作正方形A1BB1O4,O3為正方形A1BB1O4的中心;再以正方形A1BB1O4的對(duì)角線A1B1為邊在A1B1的右側(cè)作正方形A1B1O5A2,O4為正方形A1B1O5A2的中心:…;按照此規(guī)律繼續(xù)下去,則點(diǎn)O2018的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊AD⊥y軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象同時(shí)經(jīng)過頂點(diǎn)C,D.若點(diǎn)C的橫坐標(biāo)為5,BE=3DE,則k的值為( )
A. B. 3 C. D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題
某校七年級(jí)一班的部分同學(xué)和二班的部分同學(xué)在元旦期間租小巴車從瀘州去成都熊貓繁殖基地看熊貓寶寶,出發(fā)地到目的地約,一班的車速為,二班的車速為.
(1)生活委員先去超市買大家都喜歡吃的零食“呀!土豆”,但超市的存貨不多了,如果每人包,則剩余包:如果每人包,則還缺包,他們一共有多少人?
(2)因?yàn)橐话嗟哪惩瑢W(xué)臨時(shí)出了些狀況,二班的車先走,一班的車能在到達(dá)目的地之前追上二班的車嗎?如果能,什么時(shí)候追上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是用4個(gè)全等的直角三角形與1個(gè)小正方形鑲嵌而成的正方形圖案.已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊,下列四個(gè)說法:①;②;③;④;其中說法正確的是
A. ①②B. ①②③C. ①②④D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)分別填入相應(yīng)的集合里:
,2.525525552…(相鄰兩個(gè)2之間的5的個(gè)數(shù)逐個(gè)加1),0,,,0.12,,,,
(1)負(fù)數(shù)集合:{ …};
(2)非負(fù)整數(shù)集合:{ …};
(3)分?jǐn)?shù)集合:{ …};
(4)無理數(shù)集合:{ …}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列材料,然后解決后面的問題.
材料:一個(gè)三位數(shù)(百位數(shù)為a,十位數(shù)為b,個(gè)位數(shù)為c),若a+c=b,則稱這個(gè)三整數(shù)為“協(xié)和數(shù)”,同時(shí)規(guī)定c=(k≠0),k稱為“協(xié)和系數(shù)”,如264,因?yàn)樗陌傥簧蠑?shù)字2與個(gè)位數(shù)字4之和等于十位上的數(shù)字6,所有264是“協(xié)和數(shù)”,則“協(xié)和數(shù)”k=2×4=8.
(1)對(duì)于“協(xié)和數(shù)”,求證:“協(xié)和數(shù)”能被11整除.
(2)已知有兩個(gè)十位數(shù)相同的“協(xié)和數(shù)”,(a1>a2),且k1﹣k2=1,若y=k1+k2,用含b的式子表示y.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上兩動(dòng)點(diǎn),且∠DAE=45°,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°后,得到△AFC,連接DF.
(1)試說明:△AED≌△AFD;
(2)當(dāng)BE=3,CE=9時(shí),求∠BCF的度數(shù)和DE的長;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com