【題目】如圖,等邊△ABC的邊長為4,點(diǎn)O是△ABC的外心,∠FOG=120°.繞點(diǎn)O旋轉(zhuǎn)∠FOG,分別交線段AB、BC于D、E兩點(diǎn).連接DE給出下列四個(gè)結(jié)論:①OD=OE;②S△ODE=S△BDE;③S四邊形ODBE=;④△BDE周長的最小值為6.上述結(jié)論中正確的個(gè)數(shù)是( )
A.1B.2C.3D.4
【答案】B
【解析】
連接OB,OC,易證△BOD≌△COE,因?yàn)?/span>OD=OE,將S四邊形ODBE轉(zhuǎn)化為S△BOC,故可得①③正確;利用特殊時(shí)刻:當(dāng)D與B重合時(shí),E與C重合,此時(shí)S△ODE>0,而S△BDE=0,故②錯(cuò)誤;因?yàn)?/span>△BOD≌△COE,所以BD=EC,所以當(dāng)DE最小時(shí),△BDE周長最小,利用勾股定理求出DE,找到DE的最小值即可解決問題.
如圖,連接OB,OC,過點(diǎn)D作DM⊥BC于M.
(1)∵等邊△ABC的邊長為4,點(diǎn)O是△ABC的外心,∠FOG=120°,
∴易證∠BOD=∠COE,OB=OC,∠DBO=∠ECO=30°,
∴△BOD≌△COE,
∴OD=OE,故①正確;
(2)當(dāng)D與B重合時(shí),E與C重合,
此時(shí)S△ODE>0,
而S△BDE=0,故②錯(cuò)誤;
(3)∵△BOD≌△COE,
∴S四邊形ODBE=S△ODB+S△BOE
=S△OCE+S△BOE
=S△BOC
=S△ABC
=,故③錯(cuò)誤;
(4)∵△BOD≌△COE,
∴BD=EC,
∴△BDE周長=BD+BE+DE=BC+DE,
∵BC=4,
∴當(dāng)DE最小時(shí),△BDE周長最小.
設(shè)BD=x,則BM=x,DM=x,EC=BD=x,BE=4﹣x,
∴ME=BE﹣BM=4﹣x,
∴由勾股定理得:DE==,
∴DE的最小值為2,
∴△BDE周長的最小值為6,故④正確;
所以①④正確.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖數(shù)軸的A、B、C三點(diǎn)所表示的數(shù)分別為a、b、c.若|a﹣b|=3,|b﹣c|=5,且原點(diǎn)O與A、B的距離分別為4、1,則關(guān)于O的位置,下列敘述何者正確?( 。
A. 在A的左邊 B. 介于A、B之間 C. 介于B、C之間 D. 在C的右邊
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O為正方形ABCD的中心,BE平分∠DBC交DC于點(diǎn)E,延長BC到點(diǎn)F,使FC=EC,連結(jié)DF交BE的延長線于點(diǎn)H,連結(jié)OH交DC于點(diǎn)G,連結(jié)HC.則以下四個(gè)結(jié)論中:①OH∥BF,②GH=BC,③OD=BF,④∠CHF=45°。正確結(jié)論的個(gè)數(shù)為( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)B在函數(shù)y=x圖象上,點(diǎn)A在x軸的正半軸上,等腰直角三角形BCD的頂點(diǎn)C在AB上,點(diǎn)D在函數(shù)y=第一象限的圖象上若△OAB與△BCD面積的差為2,則k的值為( 。
A.8B.4C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:如圖①,直線l1∥l2,點(diǎn)A、B在直線l1上,點(diǎn)C、D在直線l2上,記△ABC的面積為S1,△ABD的面積為S2,求證:S1=S2.
拓展:如圖②,E為線段AB延長線上一點(diǎn),BE>AB,正方形ABCD、正方形BEFG均在直線AB同側(cè),求證:△DEG的面積是正方形BEFG面積的一半.
應(yīng)用:如圖③,在一條直線上依次有點(diǎn)A、B、C、D,正方形ABIJ、正方形BCGH、正方形CDEF均在直線AB同側(cè),且點(diǎn)F、H分別是邊CG、BI的中點(diǎn),若正方形CDEF的面積為l,則△AGI的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市水費(fèi)采用階梯收費(fèi)制度,即:每月用水不超過15噸時(shí),每噸需繳納水費(fèi)a元,每月用水量超過15噸時(shí),超過15噸的部分按每噸提高b元繳納下表是嘉琪家一至四月份用水量和繳納水費(fèi)情況.根據(jù)表格提供的數(shù)據(jù),回答:
月份 | 一 | 二 | 三 | 四 |
月用水量(噸) | 14 | 18 | 16 | 13 |
水費(fèi)(元) | 42 | 60 | 50 | 39 |
(1)a= 元;b= 元;
(2)求月繳納水費(fèi)p(元)與月用水量t(噸)之間的函數(shù)關(guān)系式;
(3)若嘉琪家五月和六月的月繳水費(fèi)相差24元,求這兩月用水量差的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象交軸于點(diǎn),交軸于點(diǎn)是直線下方拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的表達(dá)式;
(2)連接,是否存在點(diǎn),使面積最大,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O,點(diǎn)D為⊙O上一點(diǎn),且CD=CB,連接DO并延長交CB的延長線于點(diǎn)E,連接OC.
(1) 判斷直線CD與⊙O的位置關(guān)系,并說明理由;
(2) 若BE=,DE=3,求⊙O的半徑及AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某日王老師佩戴運(yùn)動(dòng)手環(huán)進(jìn)行快走鍛煉兩次鍛煉后數(shù)據(jù)如下表,與第一次鍛煉相比,王老師第二次鍛煉步數(shù)增長的百分率是其平均步長減少的百分率的倍.設(shè)王老師第二次鍛煉時(shí)平均步長減少的百分率為.注:步數(shù)平均步長距離.
項(xiàng)目 | 第一次鍛煉 | 第二次鍛煉 |
步數(shù)(步) | ①_______ | |
平均步長(米/步) | ②_______ | |
距離(米) |
(1)根據(jù)題意完成表格;
(2)求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com