【題目】一次函數(shù)y=mx+n與y=mnx(mn≠0),在同一平面直角坐標(biāo)系的圖象是( )
A.B.C.D.
【答案】C
【解析】
由于m、n的符號(hào)不確定,故應(yīng)先討論m、n的符號(hào),再根據(jù)一次函數(shù)的性質(zhì)進(jìn)行選擇.
解:(1)當(dāng)m>0,n>0時(shí),mn>0, 一次函數(shù)y=mx+n的圖象一、二、三象限, 正比例函數(shù)y=mnx的圖象過一、三象限,無符合項(xiàng);
(2)當(dāng)m>0,n<0時(shí),mn<0, 一次函數(shù)y=mx+n的圖象一、三、四象限, 正比例函數(shù)y=mnx的圖象過二、四象限,C選項(xiàng)符合;
(3)當(dāng)m<0,n<0時(shí),mn>0, 一次函數(shù)y=mx+n的圖象二、三、四象限, 正比例函數(shù)y=mnx的圖象過一、三象限,無符合項(xiàng);
(4)當(dāng)m<0,n>0時(shí),mn<0, 一次函數(shù)y=mx+n的圖象一、二、四象限, 正比例函數(shù)y=mnx的圖象過二、四象限,無符合項(xiàng).
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師請同學(xué)思考如下問題:如圖1,我們把一個(gè)四邊形ABCD的四邊中點(diǎn)E,F(xiàn),G,H依次連接起來得到的四邊形EFGH是平行四邊形嗎?
小敏在思考問題時(shí),有如下思路:連接AC.
結(jié)合小敏的思路作答:
(1)若只改變圖1中四邊形ABCD的形狀(如圖2),則四邊形EFGH還是平行四邊形嗎?說明理由,參考小敏思考問題的方法解決一下問題;
(2)如圖2,在(1)的條件下,若連接AC,BD.
①當(dāng)AC與BD滿足什么條件時(shí),四邊形EFGH是菱形,寫出結(jié)論并證明;
②當(dāng)AC與BD滿足什么條件時(shí),四邊形EFGH是矩形,直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校數(shù)學(xué)興趣小組,對函數(shù)y=|x﹣1|+1的圖象和性質(zhì)進(jìn)行了探究,探究過程如下:
(1)自變量x的取值范圍是全體實(shí)數(shù),x與y的幾組對應(yīng)值如表:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 | … |
y | … | 5 | 4 | m | 2 | 1 | 2 | 3 | 4 | 5 | … |
其中m= .
(2)如圖,在平面直角坐標(biāo)系xOy中,描出了上表中各對對應(yīng)值為坐標(biāo)的點(diǎn),根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象:
(3)根據(jù)畫出的函數(shù)圖象特征,仿照示例,完成下列表格中的函數(shù)變化規(guī)律:
序號(hào) | 函數(shù)圖象特征 | 函數(shù)變化規(guī)律 |
示例1 | 在直線x=1的右側(cè),函數(shù)圖象呈上升狀態(tài) | 當(dāng)x>1時(shí),y隨x的增大而增大 |
① | 在直線x=1的左側(cè),函數(shù)圖象呈下降狀態(tài) |
|
示例2 | 函數(shù)圖象經(jīng)過點(diǎn)(﹣3,5) | 當(dāng)x=﹣3時(shí),y=5 |
② | 函數(shù)圖象的最低點(diǎn)是(1,1) |
|
(4)當(dāng)2<y≤4時(shí),x的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC與∠BAD的度數(shù)比為1:2,周長是48cm,求:
(1)兩條對角線的長度;
(2)菱形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,過點(diǎn)的直線,為邊上一點(diǎn),過點(diǎn)作,交直線于,垂足為,連接,.
(1)求證:;
(2)當(dāng)為中點(diǎn)時(shí),四邊形是什么特殊四邊形?說明你的理由;
(3)若為中點(diǎn),則當(dāng)________時(shí),四邊形是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P為⊙O的直徑BA延長線上的一點(diǎn),PC與⊙O相切,切點(diǎn)為C,點(diǎn)D是⊙上一點(diǎn),連接PD.已知PC=PD=BC.下列結(jié)論:
(1)PD與⊙O相切;(2)四邊形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.
其中正確的個(gè)數(shù)為( )
A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn) A、B 在數(shù)軸上分別表示有理數(shù) a、b.
(1)對照數(shù)軸,填寫下表:
(2)若 A、B 兩點(diǎn)間的距離記為 d,試問 d 和 a、b(a<b)有何數(shù)量關(guān)系?數(shù)學(xué)式子表示.
(3)求所有到數(shù) 5 和-5 的距離之和為 10 的整數(shù)的和,列式計(jì)算.
(4)若點(diǎn) C 表示的數(shù)為 x,當(dāng)點(diǎn) C 在什么位置時(shí),|x+1|+|x﹣2|取得的值最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在由邊長為1的小正方形組成的網(wǎng)格中,的三個(gè)頂點(diǎn)均在格點(diǎn)上,請解答:
(1)判斷的形狀,并說明理由;
(2)在網(wǎng)格圖中畫出AD//BC,且AD=BC;
(3)連接CD,若E為BC中點(diǎn),F為AD中點(diǎn),四邊形AECF是什么特殊的四邊形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E是AD邊的中點(diǎn).
(1)用直尺和圓規(guī)作⊙O,使⊙O 經(jīng)過B、C、E三點(diǎn);(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)若正方形的邊長為4,求(1)中所作⊙O的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com