【題目】AB、C三地在同一直線上,甲、乙兩車分別從AB兩地相向勻速行駛,甲車先出發(fā)2小時(shí),甲車到達(dá)B地后立即調(diào)頭,并將速度提高10%后與乙車同向行駛,乙車到達(dá)A地后,繼續(xù)保持原速向遠(yuǎn)離B的方向行駛,經(jīng)過(guò)一段時(shí)間后兩車同時(shí)到達(dá)C地,設(shè)兩車之間的距離為y(千米),甲行駛的時(shí)間x(小時(shí)).yx的關(guān)系如圖所示,則BC兩地相距_____千米.

【答案】1320

【解析】

根據(jù)題意和函數(shù)圖象中的數(shù)據(jù),可以求得甲乙兩車的速度,再根據(jù)“路程=速度×?xí)r間”,即可解答本題.

解:設(shè)甲車的速度為a千米/小時(shí),乙車的速度為b千米/小時(shí),

,解得,

∴A、B兩地的距離為:80×9720千米,

設(shè)乙車從B地到C地用的時(shí)間為x小時(shí),

60x801+10%)(x+29),

解得,x22,

B、C兩地相距:60×221320(千米)

故答案為:1320

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)分別為(﹣1,0),(3,0),對(duì)于下列結(jié)論:①2a+b=0;②abc0;③a+b+c0;④當(dāng)x1時(shí),yx的增大而減;其中正確的有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,過(guò)B點(diǎn)作BM⊥AC于點(diǎn)E,交CD于點(diǎn)M,過(guò)D點(diǎn)作DN⊥AC于點(diǎn)F,交AB于點(diǎn)N.

(1)求證:四邊形BMDN是平行四邊形;

(2)已知AF=12,EM=5,求AN的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD的對(duì)角線AC、BD交于點(diǎn)O,AE平分BAD交BC于點(diǎn)E,且∠ADC=60°,AB=BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個(gè)數(shù)有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】無(wú)論m取什么實(shí)數(shù),點(diǎn)A(m+1,2m﹣2)都在直線l上.若點(diǎn)B(a,b)是直線l上的動(dòng)點(diǎn),則(2a﹣b﹣6)3的值等于____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,直線AB的函數(shù)解析式為y=-2x+8,與x軸交于點(diǎn)A,與y軸交于點(diǎn)B

1)求A、B兩點(diǎn)的坐標(biāo);

2)若點(diǎn)P(m,n)為線段AB上的一個(gè)動(dòng)點(diǎn)(A、B不重合),作PEx軸于點(diǎn)E,PFy軸于點(diǎn)F,連接EF,若△PEF的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并寫出m的取值范圍;

3)以上(2)中的函數(shù)圖象是一條直線嗎?請(qǐng)嘗試作圖驗(yàn)證.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)的圖象經(jīng)過(guò)點(diǎn),點(diǎn),交y軸于點(diǎn)C,給出下列結(jié)論::b::2:3;,則;對(duì)于任意實(shí)數(shù)m,一定有一元二次方程的兩根為,其中正確的結(jié)論是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,點(diǎn)上的一點(diǎn),連接,作于點(diǎn)

1)如圖1,當(dāng)時(shí),求證:

2)如圖2,作于點(diǎn),當(dāng)時(shí),求證:;

3)在(2)的條件下,若,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中, ADBC,EF垂直平分AC,交AC于點(diǎn)F,交BC于點(diǎn)E,且AE=AB

1)若∠BAE40°,求∠C的度數(shù);

2)若ABC周長(zhǎng)26cm,AC10cm,求DC長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案