【題目】已知一次函數(shù)y=x +m和y=-x +n的圖象都是經(jīng)過點A(-2,0),且與y軸分別交于B、C兩點.
(1)直接寫出B、C兩點的坐標B: ;C:
(2)求ABC的面積.
【答案】(1)(0,3),(0,-1),(2)4
【解析】
(1)題干要求直接寫出B、C兩點的坐標,令x=0分別代入求出y值即可.
(2)題干要求ABC的面積,根據(jù)(1)問B,C點坐標求出以BC為底邊的邊長從而求值.
解:(1)已知一次函數(shù)y=x +m和y=-x +n的圖象都是經(jīng)過點A(-2,0),將x=-2,y=0,分別代入有-3+m=0和1+n=0,求得m=3,n=-1,
又由與y軸分別交于B、C兩點,可得B,C的橫軸坐標為0即x=0,代入y=x +m和y=-x +n得到y=m和y=n,則y=3和y=-1,即B(0,3),C(0,-1).
(2)B,C都在y軸上,且B(0,3),C(0,-1),可求出BC=3-(-1)=4,
又A(-2,0)可知以BC為底邊的高即為A點的橫軸坐標的絕對值即2,則ABC的面積為
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠里有許多剩余的三角形邊角料,找出一塊△ABC,測得∠C=90°(如圖),現(xiàn)要從這塊三角形上剪出一個半圓O,做成玩具,要求:使半圓O與三角形的兩邊AB、AC相切,切點分別為D、C,且與BC交于點E.
(1)在圖中設(shè)計出符合要求的方案示意圖.(要求:尺規(guī)作圖,不寫作法,保留作圖痕跡).
(2)Rt△ABC中,AC=3,AB=5,連接AO,求出AO的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體的長為15,寬為10,高為20,點B離點C的距離為5。一只螞蟻如果要沿著長方體的表面從點A爬到點B,爬行的最短路程是( )
A.25B.C.35D.無法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下表:
序號 | 1 | 2 | 3 | … |
圖形 | x x | |||
y | ||||
x x | x x x | |||
y y | ||||
x x x | ||||
y y | ||||
x x x | x x x x | |||
y y y | ||||
x x x x | ||||
y y y | ||||
x x x x | ||||
y y y | ||||
x x x x | … |
我們把某格中字母的和所得到的多項式稱為特征多項式,例如第1格的“特征多項式”為4x+y.回答下列問題:
(1)第2格的“特征多項式”為____,第n格的“特征多項式”為____;(n為正整數(shù))
(2)若第1格的“特征多項式”的值為-8,第2格的“特征多項式”的值為-11.
①求x,y的值;
②在此條件下,第n格的“特征多項式”是否有最小值?若有,求最小值和相應(yīng)的n值;若沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是直角三角形,∠BAC=90°,D是斜邊BC的中點,E,F分別是AB,AC邊上的點,且DE⊥DF.
(1)如圖1,試說明;
(2)如圖2,若AB=AC,BE=12,CF=5,求△DEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),一架梯子長為5m,斜靠在一面墻上,梯子底端離墻3m.如果梯子的頂端下滑了1m(如圖(2)),那么梯子的底端在水平方向上滑動的距離為( ).
A.1mB.大于1m
C.不大于1mD.介于0.5m和1m之間
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,點A在反比例函數(shù)y=(k≠0)的圖象上,點D在y軸上,點B、點C在x軸上.若平行四邊形ABCD的面積為10,則k的值是( )
A. ﹣10 B. ﹣5 C. 5 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,∠B=30°,AB=10,點D是射線CB上的一個動點,△ADE是等邊三角形,點F是AB的中點,聯(lián)結(jié)EF.
(1)如圖,當(dāng)點D在線段CB上時,
①求證:△AEF≌△ADC;
②聯(lián)結(jié)BE,設(shè)線段CD=x,線段BE=y,求y關(guān)于x的函數(shù)解析式及定義域;
(2)當(dāng)∠DAB=15°時,求△ADE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究:已知,如圖1,在△ABC中,∠ACB=90°,AC=6,BC=8,D是線段AB上一個動點.
(1)畫出點D關(guān)于直線AC、BC的對稱點M、N;
(2)在(1)的條件下,連接MN
①求證:M、C、N三點在同一條直線上;
②求MN的最小值.
應(yīng)用:已知,如圖2,在△ABC中,∠C=30°,AC=CB,AB=3,△ABC的面積為S,點D、E、F分別是AB、AC、BC上三個動點,請用含S的代數(shù)式直接表示△DEF的周長的最小值,并在圖2中畫出符合題意的圖形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com