【題目】如圖,平行四邊形ABCD中,點A在反比例函數(shù)y=(k≠0)的圖象上,點Dy軸上,點B、點Cx軸上.若平行四邊形ABCD的面積為10,則k的值是(  )

A. ﹣10 B. ﹣5 C. 5 D. 10

【答案】A

【解析】

AEBCE,由四邊形ABCD為平行四邊形得ADx軸,則可判斷四邊形ADOE為矩形,所以S平行四邊形ABCD=S矩形ADOE,根據(jù)反比例函數(shù)k的幾何意義得到S矩形ADOE=|k|,利用反比例函數(shù)圖象得到.

AEBCE,如圖,

∵四邊形ABCD為平行四邊形,

ADx軸,

∴四邊形ADOE為矩形,

S平行四邊形ABCDS矩形ADOE

S矩形ADOE=|k|,

|k|=10,

k<0,

k=10.

故選:A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,折疊長方形(四個角都是直角)的一邊AD使點D落在BC邊的點F處,已知AB=DC=8cmAD=BC=10cm,

求:(1)求BF長度;

2)求CE的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某興趣小組觀察下雨天學校池塘水面高度h(單位:cm)與觀察時間t(單位:min)的關系,并根據(jù)當天觀察數(shù)據(jù)畫出了如圖所示的圖象,請你結合圖象回答下列問題:

(1)求線段BC的表達式;

(2)試求出池塘原有水面的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)y=x +my=x +n的圖象都是經(jīng)過點A(2,0),且與y軸分別交于BC兩點.

(1)直接寫出B、C兩點的坐標B: ;C:

(2)ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l是第一、三象限的角平分線.

實驗與探究:

1)由圖觀察易知A0,2)關于直線l的對稱點A′的坐標為(20),請在圖中分別標明B5,3)、C﹣25)關于直線l的對稱點B′、C′的位置,并寫出他們的坐標:B′   、C′   ;

歸納與發(fā)現(xiàn):

2)結合圖形觀察以上三組點的坐標,你會發(fā)現(xiàn):坐標平面內(nèi)任一點Pa,b)關于第一、三象限的角平分線l的對稱點P′的坐標為   

運用與拓廣:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,平行四邊形ABCD中,M、N分別為ABCD的中點.

(1)求證:四邊形AMCN是平行四邊形;

(2)若AC=BC=5,AB=6,求四邊形AMCM的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點PCD邊上一動點,連接PA,分別過點B、DBEPA、DFPA,垂足分別為E、F,如圖①。

1)請?zhí)骄?/span>BE、DFEF這三條線段的長度具有怎樣的數(shù)量關系?并說明理由。

2)若點PDC的延長線上,如圖②,那么這三條線段的長度之間又具有怎樣的數(shù)量關系?直接寫出結論。

3)若點PCD的延長線上呢,如圖③,直接寫出結論。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,ABC中,AGBC于點G,以A為直角頂點,分別以AB、AC為直角邊,向ABC作等腰RtABE和等腰RtACF,過點EF作射線GA的垂線,垂足分別為P、Q。

1)求證:⊿AEP≌⊿BAG;

2)試探究EPFQ之間的數(shù)量關系,并證明你的結論;

3)如圖2,若連接EFGA的延長線于H,由(2)中的結論你能判斷EHFH的大小關系嗎?并說明理由;

4)在(3)的條件下,若BC=AG=10,請直接寫出SAEF= .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把拋物線y=x2平移得到拋物線m,拋物線m經(jīng)過點A(﹣6,0)和原點O(0,0),它的頂點為P,它的對稱軸與拋物線y=x2交于點Q,則圖中陰影部分的面積為  ▲  

查看答案和解析>>

同步練習冊答案