【題目】已知AM是⊙O直徑,弦BC⊥AM,垂足為點(diǎn)N,弦CD交AM于點(diǎn)E,連按AB和BE.
(1)如圖1,若CD⊥AB,垂足為點(diǎn)F,求證:∠BED=2∠BAM;
(2)如圖2,在(1)的條件下,連接BD,若∠ABE=∠BDC,求證:AE=2CN;
(3)如圖3,AB=CD,BE:CD=4:7,AE=11,求EM的長.
【答案】(1)見解析;(2)見解析;(3)3
【解析】
(1)根據(jù)垂徑定理可得BN=CN,根據(jù)垂直平分線的性質(zhì)可得EB=EC,從而可得∠BED=2∠BCD,只需證明∠BAM=∠BCD即可;
(2)連接AC,如圖2,易得BC=2CN,要證AE=2CN,只需證AE=BC,只需證△ABE≌△CDB,只需證BE=BD即可;
(3)過點(diǎn)O作OP⊥AB于P,作OH⊥BE于H,作OQ⊥CD于Q,連接OC,如圖3,由AB=CD可推出OP=OQ,易證∠BEA=∠CEA,根據(jù)角平分線的性質(zhì)可得OH=OQ,即可得到OP=OH,則有,從而可得由AE=11可求出AO、EO,就可求出AM、EM.
解:(1)∵BC⊥AM,CD⊥AB,
∴∠ENC=∠EFA=90°.
∵∠AEF=∠CEN,
∴∠BAM=∠BCD.
∵AM是⊙O直徑,弦BC⊥AM,
∴BN=CN,
∴EB=EC,
∴∠EBC=∠BCD,
∴∠BED=2∠BCD=2∠BAM;
(2)連接AC,如圖2,
∵AM是⊙O直徑,弦BC⊥AM,
∴=
∴∠BAM=∠CAM,
∴∠BDC=∠BAC=2∠BAM=∠BED,
∴BD=BE.
在△ABE和△CDB中,
∴△ABE≌△CDB,
∴AE=CB.
∵BN=CN,
∴AE=CB=2CN;
(3)過點(diǎn)O作OP⊥AB于P,作OH⊥BE于H,作OQ⊥CD于Q,連接OC,如圖3,
則有
∵AB=CD,
∴AP=CQ,
∴
∵AM垂直平分BC,
∴EB=EC,
∴∠BEA=∠CEA.
∵OH⊥BE,OQ⊥CD,
∴OH=OQ,
∴OP=OQ=OH,
∴
又∵
∴
設(shè)AO=7k,則EO=4k,
∴AE=AO+EO=11k=11,
∴k=1,
∴AO=7,EO=4,
∴AM=2AO=14,
∴EM=AM﹣AE=14﹣11=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】食品安全是老百姓關(guān)注的話題,在食品中添加過量的添加劑對(duì)人體有害,但適量的添加劑對(duì)人體無害且有利于食品的儲(chǔ)存和運(yùn)輸.某飲料加工廠生產(chǎn)的A、B兩種飲料均需加入同種添加劑,A飲料每瓶需加該添加劑2克,B飲料每瓶需加該添加劑3克,已知270克該添加劑恰好生產(chǎn)了A、B兩種飲料共100瓶,問A、B兩種飲料各生產(chǎn)了多少瓶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中的正方形ABCD邊長為4,正方形ABCD的中心為原點(diǎn)O.現(xiàn)做如下實(shí)驗(yàn):拋擲一枚均勻的正方體的骰子(六個(gè)面分別標(biāo)有1至6這六個(gè)點(diǎn)數(shù)中的一個(gè)),每個(gè)面朝上的機(jī)會(huì)是相同的,連續(xù)拋擲兩次,將骰子朝上的點(diǎn)數(shù)作為直角坐標(biāo)系中點(diǎn)P的坐標(biāo)(第次的點(diǎn)數(shù)作為橫坐標(biāo),第二次的點(diǎn)數(shù)作為縱坐標(biāo))
(1)求點(diǎn)P落在正方形ABCD面上(含正方形內(nèi)部和邊界)的概率;
(2)試將正方形ABCD平移整數(shù)個(gè)單位,則是否存在一種平移,使點(diǎn)P落在正方形ABCD面上的概率為?若存在,請(qǐng)指出平移方式;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,E是CD的中點(diǎn),將△ADE沿AE翻折至△AFE,連接CF,則CF的長度是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一種折疊式晾衣架.晾衣時(shí),該晾衣架左右晾衣臂張開后示意圖如圖2所示,兩支腳OC=OD=10分米,展開角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.當(dāng)∠AOC=90°時(shí),點(diǎn)A離地面的距離AM為_______分米;當(dāng)OB從水平狀態(tài)旋轉(zhuǎn)到OB′(在CO延長線上)時(shí),點(diǎn)E繞點(diǎn)F隨之旋轉(zhuǎn)至OB′上的點(diǎn)E′處,則B′E′﹣BE為_________分米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】江門旅游文化節(jié)開幕前,某茶葉公司預(yù)測(cè)今年茶葉能夠暢銷,就用32000元購進(jìn)了一批茶葉,上市后很快脫銷,茶葉公司又用68000元購進(jìn)第二批茶葉,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但每千克茶葉進(jìn)價(jià)多了10元.
(1)該茶葉公司兩次共購進(jìn)這種茶葉多少千克?
(2)如果這兩批茶葉每千克的售價(jià)相同,且全部售完后總利潤率不低于20%,那么每千克售價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑作半圓O,點(diǎn)C是半圓上一點(diǎn),∠ABC的平分線交⊙O于E,D為BE延長線上一點(diǎn),且DE=FE.
(1)求證:AD為⊙O切線;
(2)若AB=20,tan∠EBA=,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校八年級(jí)甲、乙兩班各有學(xué)生50人,為了了解這兩個(gè)班學(xué)生身體素質(zhì)情況,進(jìn)行了抽樣調(diào)查,過程如下,請(qǐng)補(bǔ)充完整.
(1)收集數(shù)據(jù):從甲、乙兩個(gè)班各隨機(jī)抽取10名學(xué)生進(jìn)行身體素質(zhì)測(cè)試,測(cè)試成績(百分制)如下:
甲班65 75 75 80 60 50 75 90 85 65
乙班90 55 80 70 55 70 95 80 65 70
(2)整理描述數(shù)據(jù):按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
成績x 人數(shù) 班級(jí) | 50≤x<60 | 60≤x<70 | 70≤x<80 | 80≤x<90 | 90≤x≤100 |
甲班 | 1 | 3 | 3 | 2 | 1 |
乙班 | 2 | 1 | m | 2 | n |
在表中:m=______,n=______.
(3)分析數(shù)據(jù):
①兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如表所示:
班級(jí) | 平均數(shù) | 中位數(shù) | 眾數(shù) |
甲班 | 72 | x | 75 |
乙班 | 72 | 70 | y |
在表中:x=______,y=______.
②若規(guī)定測(cè)試成績?cè)?/span>80分(含80分)以上的學(xué)生身體素質(zhì)為優(yōu)秀,請(qǐng)估計(jì)乙班50名學(xué)生中身體素質(zhì)為優(yōu)秀的學(xué)生有______人.
③現(xiàn)從甲班指定的2名學(xué)生(1男1女),乙班指定的3名學(xué)生(2男1女)中分別抽取1名學(xué)生去參加上級(jí)部門組織的身體素質(zhì)測(cè)試,用樹狀圖和列表法求抽到的2名同學(xué)是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了響應(yīng)國家有關(guān)開展中小學(xué)生“課后服務(wù)”的政策,某學(xué)校課后開設(shè)了A:課后作業(yè)輔導(dǎo)、B:書法、C:閱讀、D:繪畫、E:器樂,五門課程供學(xué)生選擇;其中A(必選項(xiàng)目),再從B、C、D、E中選兩門課程.
(1)若學(xué)生小玲第一次選一門課程,直接寫出學(xué)生小玲選中項(xiàng)目E的概率;
(2)若學(xué)生小強(qiáng)和小明在選項(xiàng)的過程中,第一次都是選了項(xiàng)目E,那么他倆第二次同時(shí)選擇書法或繪畫的概率是多少?請(qǐng)用列表法或畫樹狀圖的方法加以說明并列出所有等可能的結(jié)果.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com