【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分線(xiàn),過(guò)A、C、D三點(diǎn)的圓與斜邊AB交于點(diǎn)E,連接DE.

(1)求BE的長(zhǎng);(2)求△ACD外接圓的半徑.

【答案】(1)8;(2).

【解析】

(1)根據(jù)∠ACB=90°得到AD為圓O的直徑,再根據(jù)直徑所對(duì)的圓周角為直角可得三角形ADE為直角三角形,又AD是△ABC的角平分線(xiàn),可得∠CAD=EAD,從而得到CD=ED,利用HL證明RtACDRtAED全等,得出AC=AE,再用AB-AE可求出EB的長(zhǎng)

(2)由(1)∠AED=90°,得到DEAB垂直,可得三角形BDE為直角三角形,設(shè)DE=CD=x,則BD=12-x,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,即為CD的長(zhǎng),在直角三角形ACD中,由ACCD的長(zhǎng),利用勾股定理即可求出AD的長(zhǎng),進(jìn)而得出外接圓半徑.

解:(1)∵∠ACB=90°,且∠ACB為圓O的圓周角(已知),

AD為圓O的直徑(90°的圓周角所對(duì)的弦為圓的直徑),

∴∠AED=90°(直徑所對(duì)的圓周角為直角),

ADABC的角平分線(xiàn)(已知),

∴∠CAD=EAD(角平分線(xiàn)定義),

CD=DE(在同圓或等圓中,相等的圓周角所對(duì)的弦相等),

RtACDRtAED中,

,

RtACDRtAED(HL),

AC=AE(全等三角形的對(duì)應(yīng)邊相等);

ABC為直角三角形,且AC=5,CB=12,

∴根據(jù)勾股定理得:AB==13,

BE=13﹣AC=13﹣5=8;

(2)由(1)得到∠AED=90°,則有∠BED=90°,

設(shè)CD=DE=x,則DB=BC﹣CD=12﹣x,EB=AB﹣AE=AB﹣AC=13﹣5=8,

RtBED中,根據(jù)勾股定理得:BD2=BE2+ED2 ,

即(12﹣x)2=x2+82 ,

解得:x=

CD=,又AC=5,ACD為直角三角形,

∴根據(jù)勾股定理得:AD=,

根據(jù)ADACD外接圓直徑,

ACD外接圓的半徑為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小麗和小華想利用摸球游戲決定誰(shuí)去參加市里舉辦的書(shū)法比賽,游戲規(guī)則是:在一個(gè)不透明的袋子里裝有除數(shù)字外完全相同的4個(gè)小球,上面分別標(biāo)有數(shù)字2,34,5.一人先從袋中隨機(jī)摸出一個(gè)小球,另一人再?gòu)拇惺O碌?/span>3個(gè)小球中隨機(jī)摸出一個(gè)小球.若摸出的兩個(gè)小球上的數(shù)字和為偶數(shù),則小麗去參賽;否則小華去參賽.

1)用列表法或畫(huà)樹(shù)狀圖法,求小麗參賽的概率.

2)你認(rèn)為這個(gè)游戲公平嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,弦BC垂直且平分半徑OD,AB=6,

(1)求∠ABC的度數(shù);

(2)BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,∠ADC=ABC=45°,CD=,BC=,連接AC、BD,ACAB,BD的長(zhǎng)度為_______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把一副三角板如圖甲放置,其中∠ACB=DEC=90°,A=45°D=30°,斜邊AB=6,DC=7,把三角板DCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)15°得到D1CE1(如圖乙),此時(shí)ABCD1交于點(diǎn)O,則線(xiàn)段AD1的長(zhǎng)為( 。

A. B. 5 C. 4 D.

【答案】B

【解析】由旋轉(zhuǎn)的性質(zhì)可知,在圖乙中,∠BCE1=15°,∠D1CE1=60°,AB=6,CD1=CD=7,

∴∠D1CB=60°-15°=45°,

∵∠ACB=90°

∴CO平分∠ACB,

又∵AC=BC,

COABCO=AO=BO=AB=3,

∴D1O=CD1-CO=7-3=4∠AOD1=90°,

RtAOD1中,AD1=.

故選B.

點(diǎn)睛本題解題的關(guān)鍵是由旋轉(zhuǎn)的性質(zhì)證明∠D1CB=45°,從而得到CD1平分∠ACB,結(jié)合等腰三角形的“三線(xiàn)合一”證得∠AOD1=90°,并求得AO=3,OD1=4;這樣問(wèn)題就變得很簡(jiǎn)單了.

型】單選題
結(jié)束】
10

【題目】我市某小區(qū)實(shí)施供暖改造工程,現(xiàn)甲、乙兩工程隊(duì)分別同時(shí)開(kāi)挖兩條600米長(zhǎng)的管道,所挖管道長(zhǎng)度y(米)與挖掘時(shí)間x(天)之間的關(guān)系如圖所示,則下列說(shuō)法中,正確的個(gè)數(shù)有( )個(gè).

甲隊(duì)每天挖100米;

乙隊(duì)開(kāi)挖兩天后,每天挖50米;

當(dāng)x=4時(shí),甲、乙兩隊(duì)所挖管道長(zhǎng)度相同;

甲隊(duì)比乙隊(duì)提前2天完成任務(wù).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知:如圖,E、F分別是ABCDAD、BC邊上的點(diǎn),且AE=CF

1)求證:△ABE≌△CDF;

2)若MN分別是BE、DF的中點(diǎn),連接MFEN,試判斷四邊形MFNE是怎樣的四邊形,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形OABC的邊長(zhǎng)為2,頂點(diǎn)A,C分別在x軸,y軸的正半軸上,點(diǎn)E是BC的中點(diǎn),F(xiàn)是AB延長(zhǎng)線(xiàn)上一點(diǎn)且FB=1.

(1)求經(jīng)過(guò)點(diǎn)O,A,E三點(diǎn)的拋物線(xiàn)解析式;

(2)點(diǎn)P在拋物線(xiàn)上運(yùn)動(dòng),當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí)△OAP的面積為2,請(qǐng)求出點(diǎn)P的坐標(biāo);

(3)在拋物線(xiàn)上是否存在一點(diǎn)Q,使△AFQ是等腰直角三角形?若存在直接寫(xiě)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校20名數(shù)學(xué)教師的年齡(單位:歲)情況如下:29,42,58,37,53,52,49,24,37,46,42,55,40,38,50,26,54,26,44,52.

(1)填寫(xiě)下面的頻率分布表:

分組

頻數(shù)

頻率

19.5~29.5

29.5~39.5

39.5~49.5

49.5~59.5

合計(jì)

(2)畫(huà)出數(shù)據(jù)的頻數(shù)分布直方圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙的直徑,CD是∠ACB的平分線(xiàn)交⊙O于點(diǎn)D,過(guò)D作⊙O的切線(xiàn)交CB的延長(zhǎng)線(xiàn)于點(diǎn)E.若AB=4,∠E=75°,則CD的長(zhǎng)為( 。

A. B. 2 C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案