【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點A、B、C、D都在這些小正方形的頂點上,AB、CD相交于點O,則tanAOD=________.

【答案】2

【解析】首先連接BE,由題意易得BF=CF,ACO∽△BKO,然后由相似三角形的對應邊成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在RtOBF中,即可求得tanBOF的值,繼而求得答案.

如圖,連接BE,

∵四邊形BCEK是正方形,

KF=CF=CK,BF=BE,CK=BE,BECK,

BF=CF,

根據(jù)題意得:ACBK,

∴△ACO∽△BKO,

KO:CO=BK:AC=1:3,

KO:KF=1:2,

KO=OF=CF=BF,

RtPBF中,tanBOF==2,

∵∠AOD=BOF,

tanAOD=2.

故答案為:2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O△ABC的外接圓,AB為直徑,∠BAC的平行線交⊙O與點D,過點D的切線分別交AB、AC的延長線與點E、F

1)求證:AF⊥EF

2)小強同學通過探究發(fā)現(xiàn):AF+CF=AB,請你幫忙小強同學證明這一結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,將兩個完全相同的三角形紙片ABCDEC重合放置,其中∠C=90°.若固定△ABC,將△DEC繞點C旋轉.

1)當△DEC統(tǒng)點C旋轉到點D恰好落在AB邊上時,如圖2

當∠B=E=30°時,此時旋轉角的大小為 ;

當∠B=E時,此時旋轉角的大小為 (用含a的式子表示)

2)當△DEC繞點C旋轉到如圖3所示的位置時,小楊同學猜想:△BDC的面積與△AEC的面積相等,試判斷小楊同學的猜想是否正確,若正確,請你證明小楊同學的猜想.若不正確,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上的點A、B、C、D、E表示連續(xù)的五個整數(shù),對應數(shù)分別為a、b、c、d、e.

(1)若a+e=0,則代數(shù)式b+c+d=  

(2)若a是最小的正整數(shù),先化簡,再求值:;

(3)若a+b+c+d=2,數(shù)軸上的點M表示的實數(shù)為m(ma、b、c、d、e不同),且滿足MA+MD=3,則m的范圍是  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了解學生上學的交通方式,現(xiàn)從全校學生中隨機抽取了部分學生進行我上學的交通方式問卷調(diào)查,規(guī)定每人必須并且只能在乘車、步行騎車其他四項中選擇一項,并根據(jù)統(tǒng)計結果繪制成如下兩幅不完整的統(tǒng)計圖.

請解答下列問題:

1)在這次調(diào)查中,樣本容量為 

2)補全條形統(tǒng)計圖;

3乘車所對應的扇形圓心角為 °;

4)若該學校共有2000名學生,試估計該學校學生中選擇步行方式的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線A(2,3),B(4,3),C(6,﹣5)三點.

(1)求拋物線的表達式;

(2)如圖,拋物線上一點D在線段AC的上方,DEABAC于點E,若滿足,求點D的坐標;

(3)如圖②,F為拋物線頂點,過A作直線lAB,若點P在直線l上運動,點Qx軸上運動,是否存在這樣的點P、Q,使得以BP、Q為頂點的三角形與ABF相似,若存在,求P、Q的坐標,并求此時BPQ的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知方程的兩個根是,那么,反過來,如果,那么以為兩根的一元二次方程是.請根據(jù)以上結論,解決下列問題:

(1)已知關于x的方程+mx+n=0(n≠0),求出個一元二次方程,使它的兩根分別是已知方程兩根的倒數(shù).

(2)已知a、b滿足-15a-5=0,-15b-5=0,求的值.

(3)已知a、b、c均為實數(shù),且a+b+c=0,abc=16,求正數(shù)C的最小值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB⊙O的直徑,點C是弧BD的中點,CE⊥AB于點F.

(1)求證:BF=CF;

(2)若CD=3cm,AC=4cm,求⊙O的半徑及CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,李老師出示了如下框中的題目.

在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且ED=EC,如圖.試確定線段AE與DB的大小關系,并說明理由.

小敏與同桌小聰討論后,進行了如下解答:

(1)特殊情況,探索結論

當點E為AB的中點時,如圖1,確定線段AE與的DB大小關系.請你直接寫出結論:

AE DB(填“>”,“<”或“=”).

圖1 2

(2)特例啟發(fā),解答題目

解:題目中,AE與DB的大小關系是:AE DB(填“>”,“<”或“=”).

理由如下:如圖2,過點E作EFBC,交AC于點F.

(請你完成以下解答過程)

(3)拓展結論,設計新題

在等邊三角形ABC中,點E在直線AB上,點D在直線BC上,且ED=EC.若ABC的邊長為1,AE=2,求CD的長(請你直接寫出結果).

查看答案和解析>>

同步練習冊答案