【題目】如圖,在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),拋物線y=a(x+3)(x﹣1)(a>0)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求點(diǎn)A與點(diǎn)B的坐標(biāo);
(2)若a=,點(diǎn)M是拋物線上一動(dòng)點(diǎn),若滿足∠MAO不大于45°,求點(diǎn)M的橫坐標(biāo)m的取值范圍.
(3)經(jīng)過(guò)點(diǎn)B的直線l:y=kx+b與y軸正半軸交于點(diǎn)C.與拋物線的另一個(gè)交點(diǎn)為點(diǎn)D,且CD=4BC.若點(diǎn)P在拋物線對(duì)稱軸上,點(diǎn)Q在拋物線上,以點(diǎn)B,D,P,Q為頂點(diǎn)的四邊形能否成為矩形?若能,求出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
【答案】(1)A(﹣3,0),B(1,0);(2)M(4,7);﹣2≤m≤4;(3)點(diǎn)P的坐標(biāo)為P(﹣1,4)或(﹣1,).
【解析】
(1)y=a(x+3)(x﹣1),令y=0,則x=1或﹣3,即可求解;
(2)分∠MAO=45°,∠M′AO=45°兩種情況,分別求解即可;
(3)分當(dāng)BD是矩形的邊, BD是矩形的邊兩種情況,分別求解即可.
(1)y=a(x+3)(x﹣1),令y=0,則x=1或﹣3,
故點(diǎn)A、B的坐標(biāo)分別為:(﹣3,0),(1,0);
(2)拋物線的表達(dá)式為:y=(x+3)(x﹣1)①,
當(dāng)∠MAO=45°時(shí),如圖所示,則直線AM的表達(dá)式為:y=x②,
聯(lián)立①②并解得:m=x=4或﹣3(舍去﹣3),故點(diǎn)M(4,7);
②∠M′AO=45°時(shí),
同理可得:點(diǎn)M(﹣2,﹣1);
故:﹣2≤m≤4;
(3)①當(dāng)BD是矩形的對(duì)角線時(shí),如圖2所示,
過(guò)點(diǎn)Q作x軸的平行線EF,過(guò)點(diǎn)B作BE⊥EF,過(guò)點(diǎn)D作DF⊥EF,
拋物線的表達(dá)式為:y=ax2+2ax﹣3a,函數(shù)的對(duì)稱軸為:x=1,
拋物線點(diǎn)A、B的坐標(biāo)分別為:(﹣3,0)、(1,0),則點(diǎn)P的橫坐標(biāo)為:1,OB=1,
而CD=4BC,則點(diǎn)D的橫坐標(biāo)為:﹣4,故點(diǎn)D(﹣4,5a),即HD=5a,
線段BD的中點(diǎn)K的橫坐標(biāo)為:,則點(diǎn)Q的橫坐標(biāo)為:﹣2,
則點(diǎn)Q(﹣2,﹣3a),則HF=BE=3a,
∵∠DQF+∠BQE=90°,∠BQE+∠QBE=90°,
∴∠QBE=∠DQF,
∴△DFQ∽△QEB,則,,解得:a=(舍去負(fù)值),
同理△PGB≌△DFQ(AAS),
∴PG=DF=8a=4,故點(diǎn)P(﹣1,4);
②如圖3,當(dāng)BD是矩形的邊時(shí),
作DI⊥x軸,QN⊥x軸,過(guò)點(diǎn)P作PL⊥DI于點(diǎn)L,
同理△PLD≌△BNQ(AAS),
∴BN=PL=3,
∴點(diǎn)Q的橫坐標(biāo)為4,則點(diǎn)Q(4,21a),
則QN=DL=21a,同理△PLD∽△DIB,
∴,即,解得:a=(舍去負(fù)值),
LI=26a=,故點(diǎn)P(﹣1, );
綜上,點(diǎn)P的坐標(biāo)為:P(﹣1,4)或(﹣1, ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)水果店張阿姨以每斤2元的價(jià)格購(gòu)進(jìn)某種水果若干斤,然后以每斤4元的價(jià)格出售,每天可售出100斤,通過(guò)調(diào)查發(fā)現(xiàn),這種水果每斤的售價(jià)每降低0.1元,每天可多售出20斤,為保證每天至少售出260斤,張阿姨決定降價(jià)銷售.
(1)若將這種水果每斤的售價(jià)降低x元,則每天的銷售量是 斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利300元,張阿姨需將每斤的售價(jià)降低多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)《北京晚報(bào)》介紹,自2009年故宮博物院年度接待觀眾首次突破1000萬(wàn)人次之后,每年接待量持續(xù)增長(zhǎng),到2018年突破1700萬(wàn)人次,成為世界上接待量最多的博物館.特別是隨著《我在故宮修文物》、《上新了,故宮》等一批電視文博節(jié)目的播出,社會(huì)上再次掀起故宮熱.于是故宮文創(chuàng)營(yíng)銷人員為開發(fā)針對(duì)不同年齡群體的文創(chuàng)產(chǎn)品,隨機(jī)調(diào)查了部分參觀故宮的觀眾的年齡,整理并繪制了如下統(tǒng)計(jì)圖表.
2018年參觀故宮觀眾年齡頻數(shù)分布表
年齡x/歲 | 頻數(shù)/人數(shù) | 頻率 |
20≤x<30 | 80 | b |
30≤x<40 | a | 0.240 |
40≤x<50 | 35 | 0.175 |
50≤x<60 | 37 | c |
合計(jì) | 200 | 1.000 |
(1)求表中a,b,c的值;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)從數(shù)據(jù)上看,年輕觀眾(20≤x<40)已經(jīng)成為參觀故宮的主要群體.如果今年參觀故宮人數(shù)達(dá)到2000萬(wàn)人次,那么其中年輕觀眾預(yù)計(jì)約有 萬(wàn)人次.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了拆除震后危樓,抗震減災(zāi)工作組對(duì)所剩部分危樓樓房進(jìn)行摸排測(cè)量.在危樓樓角B點(diǎn)處,測(cè)得危樓樓頂A的仰角為60°;沿樓角B點(diǎn)的正前方前進(jìn)8米到達(dá)點(diǎn)C,在離C點(diǎn)2米高的D處測(cè)得危樓樓頂A的仰角為30°.請(qǐng)根據(jù)以上測(cè)量數(shù)據(jù),求出樓頂A離地面的高度.(≈1.7,精確到1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),拋物線y=﹣x2+bx+c經(jīng)過(guò)原點(diǎn),與x軸的另一個(gè)交點(diǎn)為A(﹣6,0),點(diǎn)C是拋物線的頂點(diǎn),且⊙C與y軸相切,點(diǎn)P為⊙C上一動(dòng)點(diǎn).若點(diǎn)D為PA的中點(diǎn),連結(jié)OD,則OD的最大值是( 。
A.B.C.2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在坡頂處的同一水平面上有一座古塔,數(shù)學(xué)興趣小組的同學(xué)在斜坡底處測(cè)得該塔的塔頂的仰角為,然后他們沿著坡度為的斜坡攀行了米,在坡頂處又測(cè)得該塔的塔頂的仰角為.求古塔的高度.(結(jié)果精確到米,參考數(shù)據(jù): , , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=kx+b(k≠0)與雙曲線y=(m≠0)交于點(diǎn)A(﹣,2),B(n,﹣1).
(1)求直線與雙曲線的解析式.
(2)點(diǎn)P在x軸上,如果S△ABP=3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】華為手機(jī)與蘋果手機(jī)受消費(fèi)者喜愛(ài),某商戶每周都用25000元購(gòu)進(jìn)250張華為手機(jī)殼和150張?zhí)O果手機(jī)殼.
(1)商戶在第一周銷售時(shí),每張華為手機(jī)殼的售價(jià)比每張?zhí)O果手機(jī)殼的售價(jià)的2倍少10元,且兩種手機(jī)殼在一周之內(nèi)全部售完,總盈利為5000元,商戶銷售蘋果手機(jī)殼的價(jià)格每張多少元?
(2)商戶在第二周銷售時(shí),受到各種因素的影響,每張華為手機(jī)殼的售價(jià)比第一周每張華為手機(jī)殼的售價(jià)增加,但華為手機(jī)殼的銷售量比第一周華為手機(jī)殼的銷售量下降了a%;每張?zhí)O果手機(jī)殼的售價(jià)比第一周每張?zhí)O果手機(jī)殼的售價(jià)下降了a%,但蘋果手機(jī)殼銷售量與第一周蘋果手機(jī)殼銷售量相同,結(jié)果第二周的總銷售額為30000元,求a()的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(2,0),B(5,0),過(guò)點(diǎn)D(0,)作y軸的垂線DP交圖象于E、F.
(1)求b、c的值和拋物線的頂點(diǎn)M的坐標(biāo);
(2)求證:四邊形OAFE是平行四邊形;
(3)將拋物線向左平移的過(guò)程中,拋物線的頂點(diǎn)記為M′,直線DP與拋物線的左交點(diǎn)為E′,連接OM′,OE′,當(dāng)OE′+OM′的值最小時(shí)求直線OE′的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com