精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在ABC中,∠A70°,∠B90°,點A關于BC的對稱點是A',點B關于AC的對稱點是B',點C關于AB的對稱點是C',若ABC的面積是1,則A'B'C'的面積是( 。

A.2B.3C.4D.5

【答案】B

【解析】

BB′的延長線交A′C′E,如圖,根據軸對稱的性質得到DB′=DB,BB′AC,BC=BC′AB=A′B,則可判斷ABC≌△A′BC′,所以∠C=A′C′B,AC=A′C′,則ACA′C′,所以DEA′C′,且BD=BE,即B′E=3BD,然后利用三角形面積公式可得到SA′B′C′=3SABC

BB的延長線交ACE,如圖,

∵點B關于AC的對稱點是B',

DBDB,BBAC

∵點C關于AB的對稱點是C',

BCBC

∵點A關于BC的對稱點是A',

ABAB

而∠ABC=∠ABC,

∴△ABC≌△ABCSAS),

∴∠C=∠ACB,ACAC,

ACAC

DEAC,

ABC≌△ABC,

BDBE,

BE3BD,

SABCAC′×BE×BD×AC3SABC3×13

故選:B

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在直角坐標系中,點A的坐標為(1,0),以線段OA為邊在第四象限內作等邊△ABC,點C為x軸正半軸上一動點(OC>10,連接BC,以線段BC為邊在第四象限內作等邊△CBD,直線DA交y軸于點E.下列結論正確的有( )個

(1)OBC≌△ABD;(2)E的位置不隨著點C位置的變化而變化,點E的坐標是(0,) (3)DAC的度數隨著點C位置的變化而改變;(4)當點C的坐標為(m,0)(m1)時,四邊形ABDC的面積Sm的函數關系式為.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD的對角線BD經過坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數的圖象上.若點A的坐標為(-2,-2),則k的值為 。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,∠ACB=90°,AC=BC,點C(1,2)、A(-2,0),則點B的坐標是__________.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某商場購進甲、乙兩種商品,甲種商品共用了元,乙種商品共用了元.已知乙種商品每件進價比甲種商品每件進價多元,且購進的甲、乙兩種商品件數相同.

求甲、乙兩種商品的每件進價;

該商場將購進的甲、乙兩種商品進行銷售,甲種商品的銷售單價為元,乙種商品的銷售單價為元,銷售過程中發(fā)現(xiàn)甲種商品銷量不好,商場決定:甲種商品銷售一定數量后,將剩余的甲種商品按原銷售單價的九折銷售;乙種商品銷售單價保持不變.要使兩種商品全部售完后共獲利不少于元,問甲種商品按原銷售單價至少銷售多少件?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩人在玩轉盤游戲時,把兩個可以自由轉動的轉盤A,B都分成3等份的扇形區(qū)域,并在每一小區(qū)域內標上數字(如圖所示),游戲規(guī)則:同時轉動兩個轉盤,當轉盤停止后,若指針所指兩個區(qū)域的數字之和為3的倍數,則甲獲勝;若指針所指兩個區(qū)域的數字之和為4的倍數,則乙獲勝.如果指針落在分割線上,則需要重新轉動轉盤.請問這個游戲對甲、乙雙方公平嗎?說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在一條河的北岸有兩個目標M、N,現(xiàn)在位于它的對岸設定兩個觀測點A、B.已知ABMN,在A點測得∠MAB=60°,在B點測得∠MBA=45°,AB=600米.

(1)求點MAB的距離;(結果保留根號)

(2)B點又測得∠NBA=53°,求MN的長.(結果精確到1米)

(參考數據:≈1.732,sin53°≈0.8,cos53°≈0.6,tan53°≈1.33,cot53°≈0.75)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為響應綠色出行的號召,小王上班由自駕車改為乘坐公交車.已知小王家距離上班地點,他乘坐公交車平均每小時行駛的路程比他自駕車平均每小時行駛的路程的倍還多.他從家出發(fā)到上班地點,乘公交車所用的時間是自駕車所用時間的.

1)小王用自駕車上班平均每小時行駛多少千米?

2)上周五,小王上班時先步行了,然后乘公交車前往,共用小時到達.求他步行的速度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知直線y1=kx+1(k<0)與直線y2=mx(m>0)的交點坐標為(,m),則不等式組mx﹣2<kx+1<mx的解集為( 。

A. x> B. <x< C. x< D. 0<x<

查看答案和解析>>

同步練習冊答案